目录
198.打家劫舍
中等
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1] 输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1] 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 400
动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
确定递推公式
决定dp[i]的因素就是第i房间偷还是不偷。
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
dp数组如何初始化
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]
从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
代码如下:
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
代码如下:
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。
红框dp[nums.size() - 1]为结果。
class Solution {
// 定义一个方法用于计算在不触发警报的情况下能够偷窃到的最高金额
public int rob(int[] nums) {
// 如果数组为空或长度为0,则无法偷窃到任何金额,返回0
if (nums == null || nums.length == 0) return 0;
// 如果数组长度为1,则只能偷窃第一个房屋,返回该房屋的金额
if (nums.length == 1) return nums[0];
// 创建一个动态规划数组dp,dp[i]表示偷窃前i个房屋能够得到的最高金额
int[] dp = new int[nums.length];
// 初始化dp数组的前两个值
// 偷窃第一个房屋得到的金额是nums[0]
dp[0] = nums[0];
// 偷窃前两个房屋得到的最高金额是第一个房屋和第二个房屋金额中的较大值
dp[1] = Math.max(nums[0], nums[1]);
// 从第三个房屋开始遍历数组
for (int i = 2; i < nums.length; i++) {
// dp[i]的值等于偷窃前i-1个房屋得到的最高金额(即不偷当前房屋)
// 和偷窃前i-2个房屋得到的最高金额加上当前房屋的金额(即偷当前房屋)中的较大值
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
// 返回偷窃完所有房屋能够得到的最高金额
return dp[nums.length - 1];
}
}
213.打家劫舍II
中等
提示
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [1,2,3] 输出:3
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
对于一个数组,成环的话主要有如下三种情况:
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍 (opens new window)就是一样的了。
class Solution {
public int rob(int[] nums) {
// 如果传入的数组为空或者长度为0,则无法偷窃到任何金额,直接返回0
if (nums == null || nums.length == 0) return 0;
// 如果数组长度为1,即只有一个房屋,那么只能偷这个房屋,返回其金额
if (nums.length == 1) return nums[0];
// 考虑到不能偷相邻的房屋,计算两种情况下的最大金额:
// 1. 偷第一个房屋,但不偷最后一个房屋
// 2. 不偷第一个房屋,但偷最后一个房屋
int type1 = robAction(Arrays.copyOfRange(nums, 0, nums.length - 1));
int type2 = robAction(Arrays.copyOfRange(nums, 1, nums.length));
// 返回两种情况下的较大金额
return Math.max(type1, type2);
}
// 辅助方法,用于计算偷窃前nums.length个房屋能够得到的最高金额
public int robAction(int[] nums) {
// 如果传入的数组为空或者长度为0,则无法偷窃到任何金额,直接返回0
if (nums == null || nums.length == 0) return 0;
// 如果数组长度为1,即只有一个房屋,那么只能偷这个房屋,返回其金额
if (nums.length == 1) return nums[0];
// 创建一个动态规划数组dp,dp[i]表示偷窃前i个房屋能够得到的最高金额
int[] dp = new int[nums.length];
// 初始化dp数组的前两个值
// 偷窃第一个房屋得到的金额是nums[0]
dp[0] = nums[0];
// 偷窃前两个房屋得到的最高金额是第一个房屋和第二个房屋金额中的较大值
dp[1] = Math.max(nums[0], nums[1]);
// 从第三个房屋开始遍历数组
for (int i = 2; i < nums.length; i++) {
// dp[i]的值等于偷窃前i-1个房屋得到的最高金额(即不偷当前房屋)
// 和偷窃前i-2个房屋得到的最高金额加上当前房屋的金额(即偷当前房屋)中的较大值
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
// 返回偷窃完所有房屋能够得到的最高金额
return dp[nums.length - 1];
}
}
337.打家劫舍III
中等
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root
。
除了 root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1:
输入: root = [3,2,3,null,3,null,1] 输出: 7 解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2:
输入: root = [3,4,5,1,3,null,1] 输出: 9 解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
提示:
- 树的节点数在
[1, 104]
范围内 0 <= Node.val <= 104
动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。
确定递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。
参数为当前节点,代码如下:
vector<int> robTree(TreeNode* cur) {
其实这里的返回数组就是dp数组。
所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?
别忘了在递归的过程中,系统栈会保存每一层递归的参数。
如果还不理解的话,就接着往下看,看到代码就理解了哈。
确定终止条件
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
if (cur == NULL) return vector<int>{0, 0};
这也相当于dp数组的初始化
确定遍历顺序
首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
代码如下:
// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
代码如下:
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。