Python排序(堆排序)

文章介绍了堆的向下调整函数defsift(),用于维护堆性质;堆排序算法defheap_sort(),通过建堆和调整实现排序;使用Python内置模块heapq进行优先队列操作;并探讨了TopK问题的解决方法,利用小根堆在O(nlogK)的时间复杂度内找到前K大元素。
摘要由CSDN通过智能技术生成

1.堆的向下调整函数

def sift(ls,low,high): #low:堆的根节点位置,high:堆的最后一个元素位置
    i=low
    j=i*2+1 #最开始指向左孩子
    tmp=ls[low] #存下堆顶
    while j<high:    #只要j位置有数
        if j+1<=high and ls[j+1]>ls[j]    #右孩子数大
            j=j+1    #j指向右孩子
        if ls[j]>tmp:
            ls[i]=ls[j]
            i=j    #往下一层
            j=i*2+1
        else:    #tmp更大,把tmp放在i的位置
            ls[i]=tmp    #把tmp放在某一级领导位置
            break
    else:
        LS[i]=tmp    #把tmp放在叶子节点上

2.堆排序函数:

def heap_sort(ls):
    n=len(ls)
    for i in range((n-2)//2,-1,-1):    #表示建堆时调整的部分的根下标
        sift(ls,i,n-1)    #堆建成
    for i in range(n-1,-1,-1):    #i指向当前堆的最后一个元素
        ls[0],ls[i]=ls[i],ls[0]
        sift(ls,0,i-1)    #i-1是新的high

3.内置模块heapq

import heqpq #q->quene优先队列
import random
ls=list(range(100))
random.shuffle(ls)
heapq.heapify(ls)    #建堆
heapq.heappop(ls)

4.topk问题

题目:现有n个数,得到前k大的的数,(k<n)

思路:

排序后切片 O(nlogn)

排序lowB三人组O(Kn)

堆排序O(nlogK)

堆排序思路:

取列表前K个元素建立一个小根堆,堆顶就是目前第K大的数。、

依次遍历原列表,列表中的元素若大于堆顶,忽略。若大于堆顶,更换堆顶元素

遍历列表所有元素后,倒序弹出堆顶

def topk(ls,k):
    heap=ls[0:k]
    for i in range((k-2)//2,-1,-1):
       sift(heap,i,k-1)    #建堆
    for i in range(k,len(ls)-1):
        if ls[i]>ls[j]:
            heap[0]=la[i]
            sift(heap,0,k-1)    #遍历
    for i in range(k-1,-1,-1):
        heap[0],heap[i]=heap[i],heap[0]
        sift(ls,0,i-1)    #出数
    return heap

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_te_amo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值