在现代软件开发中,代码补全功能已经成为许多集成开发环境(IDE)和代码编辑器的标配。它不仅能够显著提高开发者的编码效率,还能减少拼写错误和编码规范问题。为了训练出更智能、更准确的代码补全模型,我们最近完成构建了一个包含15万条数据的高质量代码补全数据集。本文将详细介绍这个数据集的构建过程,包括项目爬取、数据清洗、代码分块和提示词生成等关键步骤。
一、项目背景与目标
代码补全数据集是训练代码补全模型的基础。一个高质量的代码补全数据集需要包含丰富的代码上下文信息、准确的补全结果以及具有指导意义的提示词。我们的目标是构建一个能够满足这些要求的数据集,为代码补全模型的训练提供有力支持。
二、数据集构建流程
1. 项目爬取
项目爬取是数据集构建的第一步。我们利用之前搭建的数据采集系统,从GitHub和Gitee等代码托管平台上爬取了大量的开源项目。这些项目涵盖了多种编程语言和开发领域,为我们构建多样化的代码补全数据集提供了丰富的素材。
在爬取过程中,我们采用了动态渲染、反爬策略、分页与增量爬取等技术,确保能够高效、准确地获取所需数据。截至目前,我们的系统已成功爬取了347个GitHub项目和372个Gitee项目,涉及总文件数超过10万个,累计原始数据量达20GB。
![]() |
![]() |
2. 数据清洗
爬取到的原始数据往往包含大量的噪声和无关信息,需要进行数据清洗才能用于模型训练。在数据清洗阶段,我们主要进行了以下工作:
- 去除无关文件:例如文档、图片、测试代码等。
- 格式统一:将不同编程语言的代码格式统一为JSON格式,方便后续处理。
- 代码质量评估:通过代码静态分析工具评估代码质量,去除质量较低的代码。
3. 代码分块
在代码补全模型的训练过程中,如何将原始代码拆分为有效的训练样本,是决定模型性能的关键因素。本文将深入解析一种支持多语言的动态代码分块算法,该算法能够根据不同编程语言的语法特征,智能地生成高质量的训练数据对。
语言 | 分块依据 | 特殊处理 |
---|---|---|
Python | 函数/类定义 | 装饰器语法支持 |
Java | 类/方法声明 | 泛型语法处理 |
ArkTS | 组件装饰器 | @Entry/@Component识别 |
C++ | 函数/类声明 | 模板语法处理 |
4. 提示词生成
提示词是代码补全数据集中的关键部分,它为模型提供了补全的上下文信息和指导。我们根据代码块的语法结构和语义信息,结合代码注释和文档,生成了具有指导意义的提示词。例如:
{
"input": "// Script for compiling build behavior. It is built in the build plug-in and cannot be modified currently.",
"output": "// Script for compiling build behavior. It is built in the build plug-in and cannot be modified currently.\nexport { hapTasks } from '@ohos/hvigor-ohos-plugin';\n",
"prompt": "请补全当前构建脚本的模块导出语句以正确集成Hvigor构建插件。需要从官方插件模块'@ohos/hvigor-ohos-plugin'中导出预定义的hapTasks对象集合,该对象包含HarmonyOS应用打包所需的标准化构建任务配置(包括HAP包生成、资源编译、签名校验等核心构建流程)。开发者应使用ES模块的命名导出语法将插件提供的构建任务暴露给Hvigor构建系统,确保构建流程能够正确识别并执行HarmonyOS应用的标准编译任务。关键API为包含构建任务定义的对象集合hapTasks,其类型应符合Hvigor的TaskProfile类型定义。该导出语句应保持模块的简洁性,遵循TypeScript的模块管理规范,使构建系统能自动加载插件提供的构建管道配置,该代码通常应存在于项目的hvigorfile.ts配置文件中作为构建入口。"
}
三、成果与挑战
经过项目爬取、数据清洗、代码分块和提示词生成等步骤,我们成功构建了一个包含15万条数据的高质量代码补全数据集。
在数据集构建过程中,我们也遇到了一些挑战。例如,如何高效地爬取大量项目、如何准确地进行数据清洗和代码分块、如何生成具有指导意义的提示词等。通过不断尝试和优化,我们逐步克服了这些挑战,最终构建出了满足需求的数据集。
四、总结与展望
代码补全数据集的构建是一个复杂而细致的过程,需要综合考虑多个方面的因素。我们通过项目爬取、数据清洗、代码分块和提示词生成等步骤,成功构建了一个高质量的代码补全数据集。这个数据集将为我们后续的代码补全模型训练提供有力支持,有助于提升代码补全的准确性和用户体验。
未来,我们将继续优化数据集的构建方法,探索更多有效的代码分块和提示词生成技术,以构建出更加完善和高质量的代码补全数据集。同时,我们也计划将这个数据集开源共享给更多的研究者,共同推动代码补全技术的发展。
写在最后
欢迎访问我们的项目Gitee仓库https://gitee.com/elon_z/HarmonySmartCoding以获取最新的进展和更新。