目录
树的概念
树是一种
非线性
的数据结构,它是由
n
(
n>=0
)个有限结点组成一个具有层次关系的集合。
把它叫做树是因为它看
起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
。
它具有以下的特点:
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成
M(M > 0)
个互不相交的集合
T1
、
T2
、
......
、
Tm
,其中每一个集合
Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有
0
个或多个3.后继树是递归定义的。
子数是不相交的;
除根结点外,每个结点有且只有一个父节点;
一颗N个结点的树有N-1条边。
关于树的概念
结点的度
:一个结点含有子树的个数称为该结点的度; 如上图:
A
的度为
6
树的度
:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为
6
叶子结点或终端结点
:度为
0
的结点称为叶结点; 如上图:
B
、
C
、
H
、
I...
等节点为叶结点
双亲结点或父结点
:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:
A
是
B
的父结点
孩子结点或子结点
:一个结点含有的子树的根结点称为该结点的子结点; 如上图:
B
是
A
的孩子结点
根结点
:一棵树中,没有双亲结点的结点;如上图:
A
结点的层次
:从根开始定义起,根为第
1
层,根的子结点为第
2
层,以此类推
树的高度或深度
:树中结点的最大层次; 如上图:树的高度为
4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点
:度不为
0
的结点; 如上图:
D
、
E
、
F
、
G...
等节点为分支结点
兄弟结点
:具有相同父结点的结点互称为兄弟结点; 如上图:
B
、
C
是兄弟结点
堂兄弟结点
:双亲在同一层的结点互为堂兄弟;如上图:
H
、
I
互为兄弟结点
结点的祖先
:从根到该结点所经分支上的所有结点;如上图:
A
是所有结点的祖先
子孙
:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是
A
的子孙
森林
:由
m
(
m>=0
)棵互不相交的树组成的集合称为森林
二叉树
概念
一棵二叉树是结点的一个有限集合,该集合
1.
或者为空
2.
或者是由
一个根节
点加上两棵别称为
左子树
和
右子树
的二叉树组成。
从上图可以看出:
1.
二叉树不存在度大于
2
的结点
2.
二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
两种特殊的二叉树
满二叉树
一棵二叉树,如果
每层的结点数都达到最大值,则这棵二叉树就是满二叉树
。也就是说,
如果一棵
二叉树的层数为
K,且结点总数是2的K次方减一,则它就是满二叉树
。
完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为
K
的,有
n
个结点的二叉树,当且仅当其每一个结点都与深度为
K
的满二叉树中编号从
0
至
n-1
的结点一一对应时称之为完全二叉树
二叉树的性质
1.若规定根结点个数为1,则一颗非空二叉树的第i层上最多有2的(i-1)次方个结点。(i>0)
2.若规定只有根结点的二叉树深度为1,则深度为K的二叉树的最大结点数为2的k次方-1(k>=0)
3.对如何一颗二叉树,如果其叶结点个数为N0(度为0的结点称为叶结点),度为2的非叶结点个数为N2,则N0 = N2 + 1
4.具有N个结点的完全二叉树的深度为 log2(N+1)上取整
5.对于具有N个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有结点从0开始编号,则对于序号为 i 的结点有:
若 i > 0 ,双亲序号:(i-1)/ 2 ;i = 0,i 为根结点编号,无双亲结点
若2i + 1 < n,左孩子序号:2i + 1,否则无左孩子
若2i + 1 < n,右孩子序号:2i + 1,否则无右孩子
巩固性质的习题
1.
某二叉树共有
399
个结点,其中有
199
个度为
2
的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树B 200C 198D 199
解析:设叶子结点为N0,度数为2的节点为N2,由N0 = N2 + 1 可知,N0 + N2 = 2(N2)+1 = 399 = 二叉树总共的结点399 得 N2 = (399-1)/ 2 = 199 ,所有 N0 = 199+1 = 200 ,正确答案为B.
2.
在具有
2n
个结点的完全二叉树中,叶子结点个数为( )
A nB n+1C n-1D n/2
解析:
偶数个结点 度为1的结点只有一个
N1 = 1
奇数个结点 度为1的结点只有0个
N1 = 0
所有结点为N0 + N1 + N2
题中说明有2N个结点 :
2N = N0 + N1 +N2
N0 = N2 + 1
2N = N0 + N1 +(N0-1)
(因为为偶数个结点,N1 = 1)
所以N0 = N ,选A
3.
一个具有
767
个节点的完全二叉树,其叶子节点个数为()
A 383B 384C 385D 386
解析:同上一题,N1 = 0 。767 = N0 + N1 + N2 = N0 + 0 + N0 -1 得 N0 = 384 选B
4.
一棵完全二叉树的节点数为
531
个,那么这棵树的高度为( )
A 11B 10C 8D 12
解析:log2(531)上取整 。2的10次方=1024>531 ,2的9次方=512<531 选B
二叉树的存储
二叉树的存储结构分为:顺序存储和类似与链表的存储
孩子表示法:
简单的创建二叉树
public class BinaryTree {
public static class BTNode{
BTNode left;
BTNode right;
int val;
BTNode(int val) {
this.val = val;
}
}
private BTNode root;
public void createBinaryTree() {
BTNode node1 = new BTNode(1);
BTNode node2 = new BTNode(2);
BTNode node3 = new BTNode(3);
BTNode node4 = new BTNode(4);
BTNode node5 = new BTNode(5);
BTNode node6 = new BTNode(6);
root = node1;
node1.left = node2;
node2.left = node3;
node1.right = node4;
node4.left = node5;
node5.right = node6;
}
}
二叉树的遍历
NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
例题:
1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()
A: ABDHECFGB: ABCDEFGHC: HDBEAFCGD: HDEBFGCA
2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()
A: E B: F C: G D: H
3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为()
A: adbce B: decab C: debac D: abcde
4.某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列为()
A: FEDCBA B: CBAFED C: DEFCBA D: ABCDEF
解析:
【参考答案】 1.A 2.A 3.D 4.A
递归实现二叉树的前中后后序遍历
/*
递归遍历:
*/
//前序遍历
public void preOrder(BTNode root) {
if(root==null) {
return;
}
//前序:根左有
System.out.println(root.val+" ");
preOrder(root.left);
preOrder(root.right);
}
//中序遍历
public void inOrder(BTNode root) {
if(root == null) {
return;
}
inOrder(root.right);
System.out.println(root.val+ " ");
inOrder(root.left);
}
//后序遍历
public void postOrder(BTNode root) {
if(root==null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.println(root.val+" ");
}
二叉树的基本操作
获取树中节点个数
//一.获取结点个数
public int size = 0;
//1.遍历思路
public int nodeSize(BTNode root) {
if(root==null){
return 0 ;
}
//根结点++
size++;
nodeSize(root.left);
nodeSize(root.right);
return size;
}
方法二:当前root结点总数 = 左树子树结点个数+右数结点个数+1
//2.子问题思路,要算当前root结点总数:
// 左树子树结点个数+右数结点个数+1
public int nodeSize2(BTNode root) {
if(root==null) {
return 0;
}
return nodeSize2(root.left) +
nodeSize2(root.right) + 1;
}
获取叶子结点个数
获取叶子结点(度为0的结点)的个数 1.遍历思路 一个结点的左边右边都为空,证明为叶子结点
//二.获取叶子结点(度为0的结点)的个数
//1.遍历思路
//一个结点的左边右边都为空,证明为叶子结点
public int leafSize = 0;
public int getLeafSize(BTNode root) {
if(root==null) {
return 0 ;
}
if(root.right==null&&root.left==null) {
leafSize++;
}
getLeafSize(root.left);
getLeafSize(root.right);
return leafSize;
}
子问题思路-获取叶子结点个数
当前二叉树叶子结点个数 = 根结点左边的叶子结点个数 + 根结点右边的叶子个数
//2.子问题思路,要算当前二叉树叶子结点个数
// = 根结点左边的叶子结点个数 + 根结点右边的叶子个数
public int getLeafSize2(BTNode root) {
if(root==null) {
return 0;
}
if(root.left == null && root.right==null) {
return 1;
}
return getLeafSize2(root.left) +
getLeafSize2(root.right);
}
获取第K层结点个数
root这颗树的第K层 = root.left 第 K-1 层 + root.right 的第 K-1层
//三.获取 第K层 结点个数
//子问题:
// root这颗树的第K层 = root.left 第 K-1 层 +
// root.right 的第 K-1层
public int getKLeveNodeCount(BTNode root,int k) {
if(root == null) {
return 0;
}
if(k==1) {
return 1;
}
return getKLeveNodeCount(root.left,k-1) +
getKLeveNodeCount(root.right,k-1);
}
获取二叉树的高度
高度 = (root 左树的高度 root 右树的高度 )max + 1
//四.获取二叉树的高度
//高度 = (root 左树的高度 root 右树的高度 )max
// + 1
public int height;
public int getHeight(BTNode root) {
if(root == null) {
return 0;
}
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
return (leftHeight > rightHeight ? leftHeight+1 : rightHeight+1);
}
判断值为key的元素是否存在
//五.判断K是否在二叉树里
//前序遍历的方式进行二叉树的遍历
public boolean find(BTNode root,int key) {
if(root==null) {
return false;
}
//判断根节点
if(root.val==key) {
return true;
}
//根节点左边
boolean leftVal = find(root.left,key);
if(leftVal==true) {
return true;
}
//根结点右边
boolean rightVal = find(root.right,key);
if(rightVal==true) {
return true;
}
return false;
}