二叉树--详解

目录

树的概念

关于树的概念

二叉树

概念

两种特殊的二叉树

满二叉树

完全二叉树

二叉树的性质

巩固性质的习题

简单的创建二叉树

二叉树的遍历

递归实现二叉树的前中后后序遍历

二叉树的基本操作

获取树中节点个数

获取叶子结点个数

子问题思路-获取叶子结点个数

获取第K层结点个数

获取二叉树的高度

判断值为key的元素是否存在


树的概念

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
它具有以下的特点:
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个3.后继树是递归定义的。
子数是不相交的;
除根结点外,每个结点有且只有一个父节点;
一颗N个结点的树有N-1条边。

关于树的概念

结点的度 :一个结点含有子树的个数称为该结点的度; 如上图: A 的度为 6
树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为 6
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图: B C H I... 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度或深度 :树中结点的最大层次; 如上图:树的高度为 4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点 :度不为 0 的结点; 如上图: D E F G... 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

二叉树

概念

一棵二叉树是结点的一个有限集合,该集合
1. 或者为空
2. 或者是由 一个根节 点加上两棵别称为 左子树 右子树 的二叉树组成。

从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

两种特殊的二叉树

满二叉树

一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵
二叉树的层数为 K,且结点总数是2的K次方减一,则它就是满二叉树

完全二叉树

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n
个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 0 n-1 的结点一一对应时称之为完全二叉树

二叉树的性质

1.若规定根结点个数为1,则一颗非空二叉树的第i层上最多有2的(i-1)次方个结点。(i>0)

2.若规定只有根结点的二叉树深度为1,则深度为K的二叉树的最大结点数为2的k次方-1(k>=0)

3.对如何一颗二叉树,如果其叶结点个数为N0(度为0的结点称为叶结点),度为2的非叶结点个数为N2,则N0 = N2 + 1 

4.具有N个结点的完全二叉树的深度为 log2(N+1)上取整

5.对于具有N个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有结点从0开始编号,则对于序号为 i 的结点有:

        若 i > 0 ,双亲序号:(i-1)/ 2 ;i = 0,i 为根结点编号,无双亲结点

        若2i + 1 < n,左孩子序号:2i + 1,否则无左孩子

        若2i + 1 < n,右孩子序号:2i + 1,否则无右孩子

【数据结构】之二叉树的5个性质_二叉树的性质-CSDN博客

巩固性质的习题

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
解析:设叶子结点为N0,度数为2的节点为N2,由N0 = N2 + 1 可知,N0 + N2 = 2(N2)+1 = 399 = 二叉树总共的结点399  得 N2 = (399-1)/ 2 = 199 ,所有 N0 = 199+1 = 200 ,正确答案为B.
2. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
解析:
偶数个结点  度为1的结点只有一个
N1 = 1
奇数个结点  度为1的结点只有0个
N1 = 0
所有结点为N0 + N1 +  N2
题中说明有2N个结点  :
2N = N0 + N1 +N2
N0 = N2 + 1
2N = N0 + N1 +(N0-1)
(因为为偶数个结点,N1 = 1)
所以N0 = N ,选A
3. 一个具有 767 个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
解析:同上一题,N1 = 0 。767 = N0 + N1 + N2  = N0 + 0 + N0 -1 得 N0 = 384 选B 
4. 一棵完全二叉树的节点数为 531 个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

解析:log2(531)上取整 。2的10次方=1024>531 ,2的9次方=512<531 选B

二叉树的存储

二叉树的存储结构分为:顺序存储和类似与链表的存储

孩子表示法:

简单的创建二叉树

public class BinaryTree {
    public static class BTNode{
        BTNode left;
        BTNode right;
        int val;

        BTNode(int val) {
            this.val = val;
        }
    }
    private BTNode root;

    public void createBinaryTree() {
        BTNode node1 = new BTNode(1);
        BTNode node2 = new BTNode(2);
        BTNode node3 = new BTNode(3);
        BTNode node4 = new BTNode(4);
        BTNode node5 = new BTNode(5);
        BTNode node6 = new BTNode(6);

        root = node1;
        node1.left = node2;
        node2.left = node3;
        node1.right = node4;
        node4.left = node5;
        node5.right = node6;

    }
}

二叉树的遍历

NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
例题:
1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()
A: ABDHECFG
B: ABCDEFGH
C: HDBEAFCG
D: HDEBFGCA
2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()
A: E   B: F   C: G   D: H
3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为()
A: adbce         B: decab         C: debac         D: abcde
4.某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列为()
A: FEDCBA         B: CBAFED         C: DEFCBA         D: ABCDEF
解析:
【参考答案】 1.A 2.A 3.D 4.A

递归实现二叉树的前中后后序遍历

 /*
    递归遍历:
     */
    //前序遍历
    public void preOrder(BTNode root) {
        if(root==null) {
            return;
        }
        //前序:根左有
        System.out.println(root.val+" ");
        preOrder(root.left);
        preOrder(root.right);
    }
    //中序遍历
    public void inOrder(BTNode root) {
        if(root == null) {
            return;
        }
        inOrder(root.right);
        System.out.println(root.val+ " ");
        inOrder(root.left);
    }
    //后序遍历
    public void postOrder(BTNode root) {
        if(root==null) {
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.println(root.val+" ");
    }

二叉树的基本操作

获取树中节点个数

 //一.获取结点个数
    public int size = 0;
    //1.遍历思路
    public int nodeSize(BTNode root) {
        if(root==null){
            return 0 ;
        }
        //根结点++
        size++;
        nodeSize(root.left);
        nodeSize(root.right);
        return size;
    }
方法二:当前root结点总数 = 左树子树结点个数+右数结点个数+1
  //2.子问题思路,要算当前root结点总数:
    // 左树子树结点个数+右数结点个数+1
    public int nodeSize2(BTNode root) {
        if(root==null) {
            return 0;
        }
        return nodeSize2(root.left) +
                nodeSize2(root.right) + 1;
    }

获取叶子结点个数

获取叶子结点(度为0的结点)的个数
1.遍历思路
一个结点的左边右边都为空,证明为叶子结点
 //二.获取叶子结点(度为0的结点)的个数

    //1.遍历思路
    //一个结点的左边右边都为空,证明为叶子结点
    public int leafSize = 0;
    public int getLeafSize(BTNode root) {
        if(root==null) {
            return 0 ;
        }
        if(root.right==null&&root.left==null) {
            leafSize++;
        }
        getLeafSize(root.left);
        getLeafSize(root.right);
        return leafSize;
    }

子问题思路-获取叶子结点个数

当前二叉树叶子结点个数
              = 根结点左边的叶子结点个数 + 根结点右边的叶子个数 
 //2.子问题思路,要算当前二叉树叶子结点个数
    //     = 根结点左边的叶子结点个数 + 根结点右边的叶子个数 
    public int getLeafSize2(BTNode root) {
        if(root==null) {
            return 0;
        }
        if(root.left == null && root.right==null) {
            return 1;
        }
        return getLeafSize2(root.left) +
        getLeafSize2(root.right);
    }

获取第K层结点个数

 root这颗树的第K层 = root.left 第 K-1 层 +
                    root.right 的第 K-1层
 //三.获取 第K层 结点个数

    //子问题:
    //  root这颗树的第K层 = root.left 第 K-1 层 +
    //                    root.right 的第 K-1层
    public int getKLeveNodeCount(BTNode root,int  k) {
        if(root == null) {
            return 0;
        }
        if(k==1) {
            return 1;
        }
        return getKLeveNodeCount(root.left,k-1) +
                getKLeveNodeCount(root.right,k-1);
    }

获取二叉树的高度

高度 = (root 左树的高度   root 右树的高度 )max + 1
 //四.获取二叉树的高度
    //高度 = (root 左树的高度   root 右树的高度 )max
    //                        + 1
    public int height;
    public int getHeight(BTNode root) {
        if(root == null) {
            return 0;
        }
      int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);
        return (leftHeight > rightHeight ? leftHeight+1 : rightHeight+1);
    }

判断值为key的元素是否存在


 //五.判断K是否在二叉树里
    //前序遍历的方式进行二叉树的遍历
    public boolean find(BTNode root,int key) {
        if(root==null) {
            return false;
        }
        //判断根节点
        if(root.val==key) {
            return true;
        }
        //根节点左边
        boolean leftVal = find(root.left,key);
        if(leftVal==true) {
            return true;
        }
        //根结点右边
        boolean rightVal = find(root.right,key);
        if(rightVal==true) {
            return true;
        }

        return false;

    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值