题解 洛谷 P10315 [SHUPC 2024] 原神,启动!

本文介绍了如何通过模意义下的高斯消元方法解决原神游戏中关于方块传动关系的问题,通过构建和求解线性方程组来确定每个方块的击打次数,确保解决方案符合实际游戏逻辑,包括处理负数解和模运算规则。
摘要由CSDN通过智能技术生成

安利一波我的博客

题目传送门 P10315

被原神策划折磨的最惨的一集

本题考察模意义下的高斯消元

前置芝士:高斯消元、乘法逆元、快速幂


思路分析

根据方块之间给出的传动关系以及序列初始状态,求得一组解,使得按照此方案操作后的方块序列的状态与题目要求的一致。

定义传动关系 n → a 1 , a 2 n\rightarrow a_1,a_2 na1,a2 为:“击打 n n n 号方块, n , a 1 , a 2 n,a_1,a_2 n,a1,a2 均同时从当前状态迁移到下一个状态”。

因此我将样例输入 #1 转化为如下的示意图:

(红线为每个方块的末状态,初始朝向均为 0 0 0

显然我们需要列出方程求解每个方块的击打次数。

从左到右,设每个方块需要击打的次数分别为 x , y , z x,y,z x,y,z 。根据传动关系—— 1 1 1 号方块仅能被自己、以及 2 2 2 号方块带动; 2 2 2 号方块仅能被自己、以及 3 3 3 号方块带动; 3 3 3 号方块仅能被自己、和 1 , 2 1,2 1,2 号方块带动。又因为状态每次只会更新 1 1 1 个单位,再算上每个方块的初始和终点朝向,就可以列出以下方程组:

{ x + y = 0 y + z = 2 x + y + z = 1 \begin{cases} x+y=0 \\y+z=2 \\x+y+z=1 \end{cases} x+y=0y+z=2x+y+z=1

但是这个方程组在表示上并不严谨(但仍然可以用它算出正确答案),如果击打两次 2 2 2 号方块,它固然会从状态 0 0 0 变为状态 2 2 2 。但是如果我击打 5 5 5 次,显然的——也会从 0 0 0 状态变为 2 2 2 状态。考虑到 5 ≡ 2 ( m o d 3 ) 5\equiv2\pmod3 52(mod3) ,可见击打次数存在同余关系,模数就是方块状态数 m m m

细心的同学可能发现了,上边的方程组的解是 { x = − 1 y = 1 z = 1 \begin{cases}x=-1\\y=1\\z=1\end{cases} x=1y=1z=1 。出现了负数解,而根据常识,击打次数是不能为负数的。其实这也很好解决,出现 − 1 -1 1 相当于这个方块需要变换到相对于当前状态的上一个状态,也就是击打 m − 1 m-1 m1 次。也就是说我们只需要对负数解不断加上 m m m ,直到变为第一个位于区间 [ 0 , m ) [0,m) [0,m) 内的非负整数为止。而这期间,与它相关联的方块因为总共转动了 k ⋅ m , k ∈ N k\cdot m,k\in\mathbb N km,kN 次,相当于转了 k k k 圈后又回到先前的状态。因此对我们的答案无影响,可以放心使用。

算法设计

其实就是高斯消元的模意义版本。与正常高斯消元不同的是,此处我们将存储系数的 double 类型数组改成了 long long(因为模意义下不存在小数),并用乘法逆元替代普通高斯消元的除法(除运算等价于乘逆元)即可。

对于答案输出。如果出现负数,则先模 m m m 将范围收缩到 ( − m , m ) (-m,m) (m,m) 内,再加上 m m m 将范围进一步变为非负数区间 ( 0 , 2 m ) (0,2m) (0,2m) ,最后对和进行取模,就能得到 [ 0 , m ) [0,m) [0,m) 间的非负整数。这个技巧是通用的,对于正数依然有效。


注意:消元过程中要处处取模,对答案进行处理时要将它变为 [ 0 , m ) [0,m) [0,m) 内的整数。如果高斯消元的结果是出现无数组解,也要输出(相信 SPJ 会给你 AC 的)。

代码放在下边,注释齐全。除此之外我还提供了一个函数 output() 用来输出进行消元的矩阵 M M M 的元素。可以拿来hack我的题解

忠告:不要抄代码!!!

#include <bits/stdc++.h>

#define N 110
#define NEUVILLETTE 200
#define QIQI 404
#define DILUC 502
#define LUXURIOUS_CHEST 0
using namespace std;

typedef long long ll;

ll m;
int n;

struct Matrix {
    ll mat[N][N]{};

    Matrix() {
        memset(mat, 0, sizeof mat);
    }

    void init() {
        // 预处理为单位矩阵,因为当前方块在被打后自己也会转一下
        for (int i = 1; i <= n; i++) mat[i][i] = 1;
    }
} M;

int inv(ll a) {
  // 费马小定理+快速幂求逆元
    ll b = m - 2;
    int res = 1;
    if (a == 1) return 1;
    while (b) {
        if (b & 1) res = (ll) res * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return res % m;
}

int gauss() {
    // 矩阵的秩,用来判断是否无解
    int rank = 0;
    for (int c = 1, r = 1; c <= n; c++) {
        // 高斯消元,选出绝对值最大的那一行
        int max_row = r;
        for (int i = r; i <= n; i++) {
            if (abs(M.mat[i][c]) > abs(M.mat[max_row][c])) {
                max_row = i;
            }
        }
        // 零行,不更新秩
        if (!M.mat[max_row][c]) continue;
        // 整行上移到待处理区域
        for (int i = c; i <= n + 1; i++) swap(M.mat[max_row][i], M.mat[r][i]);
        // 首个有效元素化为1,注意倒序循环
        for (int i = n + 1; i >= c; i--) {
            M.mat[r][i] *= inv(M.mat[r][c]);
            M.mat[r][i] = (M.mat[r][i] % m + m) % m;
        }
        // 初等行变换III,化简为上三角矩阵形式
        for (int i = r + 1; i <= n; i++) {
            if (abs(M.mat[i][c])) {
                for (int j = n + 1; j >= c; j--) {
                    M.mat[i][j] -= (M.mat[r][j] * M.mat[i][c]);
                    M.mat[i][j] = (M.mat[i][j] % m + m) % m;
                }
            }
        }
        r++;
        // 更新秩
        rank++;
    }
    if (rank < n) {
        // 判断无解还是无数解
        for (int i = rank + 1; i <= n; i++) {
            for (int j = 1; j <= n + 1; j++) {
                // 未知数系数全为0,但等号右侧却是非零值,无解,相当于小保底歪七七(雾
                if (abs(M.mat[i][j])) return QIQI;
            }
        }
        // 系数和常数项均为0,易知有无数组解,相当于每次小保底都歪同一个角色(指我才歪的四命迪卢克)
        return DILUC;
    }
    // 有唯一解,对答案进行处理,从下往上回代未知数
    for (int i = n; i >= 1; i--) {
        for (int j = i + 1; j <= n; j++) {
            M.mat[i][n + 1] -= (M.mat[i][j] * M.mat[j][n + 1]);
            M.mat[i][n + 1] = (M.mat[i][n + 1] % m + m) % m;
        }
    }
    // 有唯一解,相当于小保底不歪(误
    return NEUVILLETTE;
}

void output() {
    // 调试输出函数,调用以查看矩阵M的元素值
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n + 1; j++) {
            cout << setw(10) << M.mat[i][j];
        }
        cout << endl;
    }
    cout << endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    
    cin >> n >> m;

    M.init(); // 方块被打后自己也会转一下

    for (int i = 1; i <= n; i++) {
        int k;
        cin >> k;
        for (int j = 1; j <= k; j++) {
            int x;
            cin >> x;
            // 处理传动关系
            M.mat[x][i] = 1;
        }
    }
    for (int i = 1; i <= n; i++) {
        ll s;
        cin >> s;
        // 处理初状态
        M.mat[i][n + 1] -= s;
    }
    for (int i = 1; i <= n; i++) {
        ll t;
        cin >> t;
        // 处理末状态
        M.mat[i][n + 1] += t;
    }

    int res = gauss();
    if (res == NEUVILLETTE || res == DILUC) {
        // 好歹不是七七
        for (int i = 1; i <= n; i++) cout << (M.mat[i][n + 1] % m + m) % m << ' ';
    } else {
        // ↑ ↓ ↑ → ← → ← →
        cout << "niuza";
    }
    cout << endl;

    // F 华丽的宝箱
    return LUXURIOUS_CHEST;
}

AC 记录

原神,启动! \textcolor{white}{原神,启动!} 原神,启动!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值