1. 什么是PolynomialFeatures类?
PolynomialFeatures类是sklearn.preprocessing模块中的一个类,用于生成多项式特征。它能够将原始的特征转换为多项式特征,以便应用在回归模型中,从而使模型捕捉到输入数据的非线性关系。
2. 主要功能
PolynomialFeatures的作用是将输入的特征拓展成多项式特征。例如,如果你有一个一维特征x,它可以拓展出x, x^2, x^3等等,具体取决于你设置的多项式的阶数。
3. 为什么需要PolymomialFeatures呢?
在简单的线性回归模型中,我们拟合的是线性的直线,可能无法很好地捕捉数据中的复杂模式。然而,通过引入多项式特征,我们可以让模型拟合更复杂的曲线,解决非线性回归问题。
4.用法:
#引入库
from sklearn.preprocessing import PolynomialFeatures
#初始化类并实例化
ploy_reg = PolynomialFeatures(degree = 4)
#被拟合前的数据
X = [[1], [2], [3]]
#拟合后的数据
X_ploy = ploy_reg.fit_transform(X)