PolynomialFeatures类是干嘛的?

1. 什么是PolynomialFeatures类?

        PolynomialFeatures类是sklearn.preprocessing模块中的一个类,用于生成多项式特征。它能够将原始的特征转换为多项式特征,以便应用在回归模型中,从而使模型捕捉到输入数据的非线性关系。

2. 主要功能

        PolynomialFeatures的作用是将输入的特征拓展成多项式特征。例如,如果你有一个一维特征x,它可以拓展出x, x^2, x^3等等,具体取决于你设置的多项式的阶数。

3. 为什么需要PolymomialFeatures呢?

        在简单的线性回归模型中,我们拟合的是线性的直线,可能无法很好地捕捉数据中的复杂模式。然而,通过引入多项式特征,我们可以让模型拟合更复杂的曲线,解决非线性回归问题。

4.用法:

 

#引入库
from sklearn.preprocessing import PolynomialFeatures

#初始化类并实例化
ploy_reg = PolynomialFeatures(degree = 4)

#被拟合前的数据
X = [[1], [2], [3]]

#拟合后的数据
X_ploy = ploy_reg.fit_transform(X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值