案例七:最少砝码

分析:

注意,虽然题目没有说,但稍加分析就知道,每个砝码只有1个,要不然光是重量为
1的砝码就能称出任意的重量

首先,如果要称的重量为1的话,只能选择重量为1的砝码,1是必选的一个砝码。然后再称比1重的,反正都是要再加砝码,那我们为何不选一个能称的重量尽可能大的
先考虑选用两个砝码,是否能称1~N连续的重量。
选1、2的砝码可以称重:1,2,1+2=3
选1、3的砝码可以称重:1,3-1=2(减相当于放在天平左边),3,3+1=4
选1、4的砝码可以称重:1,无法称2,不合题意
因此,如果只能选2个砝码,则选1和3,能称的重量最大,为4
当我们还需要再增加一个砝码时,按上述方法分析可得,选1、3、9的组合可以满足小于等于13(13=1+3+9)的所有重量

从中可以发现一个规律当我们需要第三个砝码时,前两个砝码(1、3)满足的最大重量已经是4了,下一个要满足的重量是5,我们遵循砝码尽可能大的原则选择的第三个砝码的重量满足的条件是:它减去“已经可以称得的最大重量”可以得到“下一个需要称的重量”。也就是weight-4=5,可得weight为9
按照这个规律,下一个选重量多少的砝码呢?13下一个是14,也就是27-13=14.27是3的立方。那么我们只要找到幂次,让输入的数位于3的这个幂次区间就行了 

代码如下: 

#include<iostream>
using namespace std;

int main()
{
    int N; cin >> N;
    //count:选用砝码的数量;weight:最重的砝码重量;mx;能称的最大重量
    int count = 1,weight = 1,mx = 1;
    while(mx<N)
    {
        count++;
        weight*=3; //选用的砝码都是3的幂次
        mx+=weight; //能称的最大重量就是3的幂次之和
    }
    cout << count << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值