汉诺塔问题分析

这个问题可采用递归思想分析,讲n个盘子由a座移动到c座可以分为三个过程:将a座上最上面的n-1个盘子移动到b座上。再将a座上最下面一个盘子移至c座。最后将b座上的n-1 个盘子借助a座移至c座。上述过程是把移动n个盘子的问题转化为移动n-1个盘子的问题。 按这种思路, 再将移动n-1个盘子的问题转化为移动n-2个盘子的问题……直至移动1个盘子。

1、自顶向下,逐渐求精:

自顶向下法将复杂的大问题分解为相对简单的小问题,能找出每个问题的关键、重点所在,然后用精确的思维定性、定量地去描述问题。对于汉诺塔问题,假如有三个圆盘,我们就要先将圆盘1移动到C,再将圆盘2移动到B,接着将C的盘子1移动到B,然后将圆盘3移动到C,操作如图所示:

因此,这个问题可以分解为三个问题,即将 n-1 个圆盘从A移动到B,将第 n 个圆盘从第A移动到C,再将 n-1 个圆盘从B移动到C。

2、函数调用、递归和分治:
  具体来说,我们可以编写一个函数 Hanoi(n, 'A', 'B', 'C'),其中 n 表示要移动的圆盘数,A、B 和 C 分别表示三个柱子。当 n == 1时,直接将盘子从 A 移动到C;当 n > 1时,可以拆分成3大步骤①将 n– 1 个盘子从 A 移动到B;②将编号为 n 的盘子从 A 移动到C;③将 n– 1 个盘子从 B 移动到C,最后实现递归调用。

3、不要跨层分析:不要跳过这级分析下一级。

4、形参与实参:
  在函数调用过程中,形参表示你的函数里所要用的参数的类型和名字,实参表示具体的数值。在汉诺塔问题中,形参 n、A、 B、 C分别表示要移动的圆盘数和三个柱子。在函数调用时,我们需要提供实际的圆盘数和三个柱子的具体名称,如 Hanoi(5, ‘A’, ‘B’, ‘C’)。

5、有意义、规范的标识符:
  在编写程序时,使用有意义、规范的标识符可以使代码更易于理解和维护。在汉诺塔问题中,我们可以使用有意义的变量名和函数名,如 n、A、 B、C和 Hanoi()。这些标识符可以更好地表达程序的含义,并提高代码的可读性。

6、时间复杂度:
  设盘子个数为n时,需要T(n)步,把A柱子n-1个盘子移到B柱子,需要T(n-1)步,A柱子最后一个盘子移到C柱子一步,B柱子上n-1个盘子移到C柱子上T(n-1)步。得递推公式T(n)=2TT(n-1)+1
所以汉诺塔问题的时间复杂度为O(2^n)

 7、递归栈(代码跟踪):
  在汉诺塔问题中,每个递归调用会创建一个新的函数调用,并将其压入递归栈中。当递归调用返回时,对应的函数调用会被弹出,恢复到上一层调用的状态。因此,在解决汉诺塔问题的过程中,递归栈的深度等于递归调用的层数,即 n。

8、空间复杂度:
  汉诺塔问题的空间复杂度为 O(n),其中 n 是圆盘的数量。这是因为在解决问题的过程中,我们需要使用一个递归栈来保存每个递归调用的状态。由于递归栈的深度等于递归调用的层数,因此空间复杂度为 O(n)。
 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值