高数学习中的常系数非齐次线性微分方程的问题

一.遇到的问题

首先我在写数学题的时候,遇到了一个问题,就是我用非齐次方程的代入数值的公式进行操作的时候,遇到了,一个问题,就是,我用公式算的竟然和答案给的不一样,当时我就有一点困惑,然后,我一点一点研究,探明这个公式的使用范围。

0.0那个数学公式在梨米特讲义的位置

在这里插入图片描述
在这里插入图片描述

0.1那个公式在梨米特讲义上的例题

在这里插入图片描述
在这里插入图片描述

0.2那道数学公式在同济课本的地方

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.那道题目

在这里插入图片描述

2.我算的结果和答案给的区别

1.我算的结果

在这里插入图片描述

2.答案给的是这样子的

在这里插入图片描述

二.解决的方案

当时我在淘宝问了一下,然后,我就知道我的问题在哪里了,

1.我的错误分析

通过和淘宝上的那位老师探究,我明白了,我的问题正是没有将二阶导的系数化为1,所导致的问题,老师,说,你可以方程俩边都除以2,将2阶导的系数化为1,就可以就解决问题了,我一想这个形式不正是和书上给的形式一样吗?那结果一个是对的,然后我就用symbol这个网站测试了一下,下面是测试结果。

2.测试的结果分析

1.首先是在网站symbol这个网站测试的结果,如下,大家有兴趣可以试一下。

在这里插入图片描述

2.然后答案给的看一下

在这里插入图片描述

3.分析结果

通过这些结果我们很清楚的看到,通过把二阶导的系数化为1,算出来是对的

三.我的建议

通过以上的分析相信大家都认识到了,这个公式的适用范围,那就是二阶导的系数必须为1,其他的倒是没有要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值