- 博客(13)
- 收藏
- 关注
原创 多重背包2/快速幂
【多重背包2】有 N 种物品和一个容量是 V的背包。第 i种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
2024-07-23 08:53:35 175
原创 topic 1 01背包/完全背包/多重背包1
【01背包】有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i 件物品的体积是 vi,价值是 wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
2024-07-20 20:26:04 415
原创 VS 2022生成依赖性的自定义文件没有cuda解决办法
我的电脑在使用cuda编程时需要配置环境,前提是我的CUDA、Cudnn很早之前安装过,自定义安装CUDA的时候,没有勾选。解决办法是,重装CUDA。
2024-06-28 18:19:50 352
原创 基于YOLOv8的音符识别系统
每一张图片会得到对应的标注 txt 文件,这是 YOLO 格式的数据,每一行代表的意义是 class,x,y,width,height,并且后面四个值是需要相对于图片的Height,Width 做归一化。这样就会得到YOLOv8训练过程的一些结果保存在路径(/runs/detect,下面列举几个。实验要求:使用YOLOv8预训练模型,实现音符识别。模型配置文件(修改nc)
2024-06-27 23:35:29 292
原创 Unity Netcode如何实现网络射击
最近在准备《虚拟现实》这门课的期末作业,用Unity 3D实现一个课设,因为我和组员做的是基于Unity.Netcode的联网射击第三人称游戏,所以遇到了这个问题,小编也是忙活了2个星期才得以解决,特此分享哦。4.给玩家添加的生命值脚本需要网络变量来实现,他会自动更新在服务器的,这样当玩家生命值为0 的时候,大家都知道,便于后面的逻辑。不过他做的是2D游戏,我的是3D,整体思路就是。结尾:只要大家不放弃,有问题都能解决的,加油!2.将这两个子弹变体运用起来。参考了B站大佬的思路,1.做两个子弹的变体。
2024-06-07 13:04:27 302
原创 第三章《线性回归》part1
回归就是利用模型拟合输入特征与标签之间的关系;线性回归是通过属性的线性组合来进行预测的线性模型,其目的是找到一条直线,一个平面或者更高维度的超平面,使得预测值和真实值之间的误差最小。易于建模,形式简单,可解释性,非线性模型的基础。监督学习分为:回归和分类。
2023-08-15 09:45:27 54 1
原创 第二章《模型评估与选择》part2_性能度量one
但是,高精度不一定就代表这个模型分类效果很好;比如,90个桃和10个苹果放在黑箱子里,我不需要任何技术,我把里面全部判断为桃子,我的分类精度也能高达90%,根据混淆矩阵,会计算Precision,Recall,F1-score。2.MSE的单位和目标不同,其他和目标一致;1.错误率就是分错的样本占总样本个数;取值为0,说明拟合的是目标的均值;R方系数取值为1,说明完美拟合;3.三者对预测错误的正负不敏感;精度就是分对的样本占总样本个数;1.三者的取值范围都是0-∞;取值为负数,说明拟合不理想。
2023-06-26 21:22:45 69 1
原创 第二章《模型评估与选择》part1_性能度量
但是,当类别严重不均衡的情况下,单使用精度来评估,是没有意义的。因为假设有95个0,5个1,我即使不使用任何算法,单一的全部猜测100个全是0,我的精度也能高达95%。R^2反映预测值与真实值之间的符合程度,其值为1代表完美拟合,其值为0,预测值就是真实值的平均值,其值小于0,糟糕的拟合。马修斯相关系数MCC:TP*TN-FP*FN/(sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN))2.MAE,RMSE的单位与预测目标一致,MSE不同。查全率Recall:TP/(TP+FN)
2023-05-02 09:51:11 102 2
原创 第一章《绪论》
机器学习的定义:假设用P来评估计算机程序在某任务T上的性能,若一个程序通过利用经验E在T任务上获得性能提升,则我们就说关于T和P,该程序对E进行了学习。鲁棒性:T.Dietterich强调:随着人工智能技术的发展,越来越多地面临高风险应用,因此人工智能必须要有“鲁棒性”(也就是更正错误的鲁棒)。机器学习:计算机利用以后的数据(经验),得出的某种模型,并预测未来新数据的一种方法。机器的学习:数据+不断提高“技能”(此处的技能可以是:计算机系统、程序、算法等)较好拟合:对训练集拟合较好,对测试集也较好。
2023-05-01 11:11:26 55 1
原创 《机器学习-Machine Learning》开篇
Hello,亲爱的CSDN的亲人们和粉丝们,你们好!从今天开始,小编就要开启一个新的专栏“机器学习”,既可以和大家一起分享交流,也可以随时记录自己的一些想法和思考。随着最近爆火的ChatGPT and GPT-4的问世,相信大家对 Artificial Intelligence(人工智能)的学习将会进入一个前所未有的高潮,机器学习就会成为入门的第一基础课,相信我们会一起加油,一起开启AI的大门!
2023-05-01 10:40:17 61 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人