- 博客(3)
- 收藏
- 关注
原创 【无标题】
第二步设计一个损失去判断对参数数值的设定的好坏。计算预测值与实际值的差距,将所有数据的误差相加,越小参数就越好。预测值与实际值的差距有多种方法,不同的数据可以采用不同的方法,蛮灵活的。还给出了误差表面的图,更形象的帮助理解损失的概念。机器学习的过程就是找函数的过程,第一步是学出带有未知参数的函数,这个函数能够预测未来的观看次数。这些未知参数要通过数据来查找出来,猜测需要了解其领域知识,猜测不一定是对的,后面会修正这些参数。学习前5页的内容,主要是在介绍机器学习的三个步骤,首先给出了机器学习的几种任务。
2024-08-25 15:27:39 175
原创 Datawhale AI 夏令营 机器学习入门task3
然后是对这些特征的性质进行分类阐述,比如上面我说的就是异常点特征和特殊事件特征,对这些不同的特征用不同的方法去处理,异常点的处理方法可以是简单标记、剔除、修改。这些特征与分析的方法都能提高模型对数据的理解。当然也不是特征越多越好,在进行特征构建的时候要能分清楚哪些是对模型有帮助的,要有针对性的,有目的性的使模型向着需要的方向发展,这种特征对模型的帮助是巨大的。然后是模型的优化,task3文档中使用的是模型融合的思路,当然也有很多其它的模型优化方式,数据适用于哪种模型也是需要测试的。
2024-07-20 22:07:07 179
原创 Datawhale AI 夏令营 机器学习入门task
二是根据id来分,每个id就是一个房屋的编号,对一个房屋按时间绘制折线图,横坐标为dt,表示天数的变化,dt越小则离现在越近,假设过去了100天,dt为100时就是第1天的数据,dt为10则是第90天的数据,现在就是第100天。将之前几天的数据信息给到后面的信息中,因为这两者的信息可能有关联性,比如说一连几天都很热啊,开了几天空调。然后是进行特征工程的构建,我是这样理解的,我们要进行预测的就是特征,那么我就用过去的特征来进行匹配,当类型相似时,时间跨度相似时就可以通过拟合来达到一个相似的结果。
2024-07-17 22:47:45 277
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人