什么是数字孪生

数字孪生是一种利用物理模型和实时数据在虚拟空间中构建与实体完全一致的数字模型的技术,广泛应用于产品设计、制造、工程和娱乐等领域,通过模拟预测实体行为,推动智能制造和创新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数字孪生(Digital Twin)也被称为数字映射或数字镜像,是一种超现实的概念。它充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。简而言之,数字孪生就是在虚拟世界中创建与现实世界实体完全一致的数字模型,如同一个“双胞胎兄弟”一样。

数字孪生体是对实体对象的动态仿真,它的“动作”和“反应”都基于物理设计模型、传感器反馈的数据以及运行历史数据。因此,数字孪生体不仅可以反映实体对象的当前状态,还可以预测其未来的行为和性能。

数字孪生是一种普遍适应的理论技术体系,在众多领域都有广泛的应用,包括产品设计、产品制造、医学分析、工程建设等领域。例如,在工程建设领域,数字孪生可以在工厂建设之前完成数字化模型,从而在虚拟环境中进行仿真和模拟,提高建设效率和准确性。在智能制造领域,数字孪生可以帮助工程师在虚拟环境中进行系统设计改动和测试,避免对实际系统的影响,同时提高设计效率和降低成本。

总的来说,数字孪生是一种强大的技术,它使得人们能够在虚拟世界中模拟和预测实体对象的行为和性能,为各种应用提供了前所未有的可能性和优势。

数字孪生是客观世界中的物化事物及其发展规律被软件定义后的一种结果。丰富的工业软件内涵以及强大的软件定义效果,让数字孪生的研究在国内外呈现出百花齐放的态势。作者认为数字孪生与计算机辅助(CAX)软件(尤其是广义仿真软件)以及数据采集/分析的发展关系十分密切。

在工业界,人们用软件来模仿和增强人的行为方式,例如,计算机绘图软件最早模仿的是人在纸面上作画的行为。人机交互技术发展成熟后,以下模仿行为开始出现:

  • 用CAD软件模仿产品的结构与外观

  • CAE软件模仿产品在各种物理场情况下的力学性能

  • CAM软件模仿零部件和夹具在加工过程中的刀轨情况

  • CAPP软件模仿工艺过程

  • CAT软件模仿产品的测量/测试过程

  • OA软件模仿行政事务的管理过程

  • MES软件模仿车间生产的管理过程

  • SCM软件模仿企业的供应链管理

  • CRM软件模仿企业的销售管理过程

  • MRO软件模仿产品的维修过程管理,等等

依靠软件中的某些特定算法,人们已经开发出了某些具有一定智能水平的工业软件,如具有关联设计效果的产品设计系统。

在文学与娱乐界,人们用软件来模仿和增强人的体验方式,例如:

  • 用电子书来模仿纸质书

  • 用电子音乐来模仿现场音乐

  • 用电子琴软件来弹琴

  • 用评书软件来说书

  • 用卡通软件来模仿漫画

  • 用动漫软件来模仿动画影片

  • 用游戏软件来模仿各种真实游戏

  • 用百年历软件来快速查找某个特殊日期或“吉时”等

人们不仅可以模仿已知的、有经验的各种事物,还可以创造性地模仿各种未知的、从未体验过的事物,例如影视界可以用软件创造出诸如龙、凤、麒麟、阿凡达、白雪公主、七个小矮人等故事中的形象,当然也可以创造出更多的闻所未闻、见所未见的各种形象。

特别是当这种模仿与VR/AR技术结合在一起的时候,所有的场景都栩栩如生,直入心境。于是,在由数字虚体构成的虚拟世界中,所有的不可能都变成有可能,所有的在物理世界无法体验和重复的奇妙、惊险和刺激场景,都可以在数字空间得以实现,最大限度地满足了人的感官体验和精神需求。

事实上,十几年前在汽车、飞机等复杂产品工程领域出现的“数字样机”的概念,就是对数字孪生的一种先行实践活动,一种技术上的孕育和前奏。

数字样机最初是指在CAD系统中通过三维实体造型和数字化预装配后,得到一个可视化的产品数字模型(几何样机),可以用于协调零件之间的关系,进行可制造性检查,因此可以基本上代替物理样机的协调功能。

但随着数字化技术的发展,数字样机的作用也在不断增强,人们在预装配模型上进行运动、人机交互、空间漫游、机械操纵等飞机功能的模拟仿真。之后又进一步与机器的各种性能分析计算技术结合起来,使之能够模拟仿真出机器的各种性能。因此将数字样机按其作用从几何样机,扩展到功能样机和性能样机。

以复杂产品研制而著称的飞机行业,在数字样机的应用上走在了全国前列。某些型号飞机研制工作在20世纪末就已经围绕着数字样机展开。数字样机将承载几乎完整的产品信息。

因此,人们可以通过数字样机进行飞机方案的选择,利用数字样机进行可制造的各种仿真,在数字样机上检查未来飞机的各种功能和性能,发现需要改进的地方,最终创建出符合要求的“数字飞机”,并将其交给工厂进行生产,制造成真正的物理飞机,完成整个研制过程。

无论是几何样机、功能样机和性能样机,都属于数字孪生的范畴。数字孪生的术语虽然是最近几年才出现的,但是数字孪生技术内涵的探索与实践,早已经在十多年前就开始并且取得了相当多的成果。

发展到现在,人们发现在数字世界里做了这么多年的数字设计、仿真、工艺、生产等结果,越来越虚实对应,越来越虚实融合,越来越广泛应用,数字虚体越来越赋能于物理实体系统。

近些年,当人们提出了希望物理空间中的实体事物与数字空间中的虚拟事物之间具有可以联接数据通道、相互传输数据和指令的交互关系之后,数字孪生概念基本成形,并且作为智能制造中一种基于IT视角的新型应用技术,逐渐走进人们的视野。

事实上,现有的工业软件研发与生产数据以及沉积在工业领域内的大量的工业技术和知识,都是实现数字孪生的上好“原料”和基础构件,数字孪生在工业现实场景中已经具有了实现和推广应用的巨大潜力。

根据目前看到的资料,数字孪生术语由迈克尔·格里夫(Michael Grieves)教授在美国密歇根大学任教时首先提出。

2002年12月3日他在该校“PLM开发联盟”成立时的讲稿中首次图示了数字孪生的概念内涵,2003年他在讲授PLM课程时使用了“Digital Twin(数字孪生)”,在2014年他撰写的“数字孪生:通过虚拟工厂复制实现卓越制造(Digital Twin:Manufacturing Excellence through Virtual Factory Replication)”文章中进行了较为详细的阐述,奠定了数字孪生的基本内涵。

在航太领域和工业界,较早开始使用数字孪生术语。2009年美国空军实验室提出了“机身数字孪生(Airframe Digital Twin)”的概念。2010年NASA也开始在技术路线图中使用“数字孪生(Digital Twin)”术语。

大约从2014年开始,西门子、达索、PTC、ESI、ANSYS等知名工业软件公司,都在市场宣传中使用“Digital Twin”术语,并陆续在技术构建、概念内涵上做了很多深入研究和拓展。

数字孪生尚无业界公认的标准定义,概念还在发展与演变中。下面举例几个国内外企业或组织做的数字孪生定义,供读者参考。

  • 美国国防采办大学认为:数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度的仿真过程,在虚拟空间中完成对物理实体的映射,从而反映物理实体的全生命周期过程。

  • ANSYS公司认为:数字孪生是在数字世界建立一个与真实世界系统的运行性能完全一致,且可实现实时仿真的仿真模型。利用安装在真实系统上的传感器数据作为该仿真模型的边界条件,实现真实世界的系统与数字世界的系统同步运行。

  • 中国航空工业发展研究中心刘亚威认为:从本质上来看,数字孪生是一个对物理实体或流程的数字化镜像。创建数字孪生的过程,集成了人工智能、机器学习和传感器数据,以建立一个可以实时更新的、现场感极强的“真实”模型,用来支撑物理产品生命周期各项活动的决策。

3. 需要考虑的特殊对应模式

在一些特殊场景中,数字孪生还存在“一对少”“少对一”“一对零”“零对一”的特殊对应模式:

一架战斗机由数万个结构件、几十万个标准件、大量的电子元器件和机载设备构成。

在从飞机的方案设计,到初步设计、详细设计、试制、试验,再到批生产、交付、运行、维护、维修,最后再到报废的全生命周期中,一个标准件数字模型会对应成千上万个实物零件,一个实物零件也会对应产品设计模型、多个仿真模型、工艺模型、工艺仿真模型、生产模型、装配模型、维护维修模型等,由此形成了物理实体和数字虚体的多元化对应关系,即“一对一”“一对多”“多对一”“多对多”“一对少”“少对一”“一对零”“零对一”。因此只谈“一对一”就显得在理解上过于简单了。

综上所述,“Digital Twin”一词在翻译和理解时,既不应限定在“双”,也不宜理解为“胎”。该词借用“Twin”之意,所表达的是一种数字虚体与物理实体非常相像的多元化虚实映射关系。

应用场景和对应模式是多种多样的。

  • 上海优也信息科技有限公司首席技术官林诗万博士对数字孪生的理解是,数字孪生体可有多种基于数字模型的表现形式,在图形上,有几何、高保真、高分辨率渲染、抽象简图等;在状态和行为上,有设备运行、受力、磨损、报警、宕机、事故等;在质地上,有材质、表面特性、微观材料结构等。如图5-2所示。

  • 北京航空航天大学张霖教授认为,“数字孪生是物理对象的数字模型,该模型可以通过接收来自物理对象的数据而实时演化,从而与物理对象在全生命周期保持一致。”

  • 作者经过多年研究,也给出了自己的理解和定义:数字孪生是在“数字化一切可以数字化的事物”大背景下,通过软件定义和数据驱动,在数字虚体空间中创建的虚拟事物,与物理实体空间中的现实事物形成了在形、态、质地、行为和发展规律上都极为相似的虚实精确映射关系,让物理孪生体与数字孪生体具有了多元化映射关系,具备了不同的保真度(逼真、抽象等)。

  • 数字孪生不但持续发生在物理孪生体全生命周期中,而且数字孪生体会超越物理孪生体生命周期,在数字空间持久存续。充分利用数字孪生可在智能制造中孕育出大量新技术和新模式。

  • 数字孪生,非双非胎

    “Digital Twin”在翻译和理解上颇有不同,歧义性发生在数字孪生应用场景中人们对“Twin”的理解上。“Twin”作为名称在英汉词典中有几种翻译结果:“孪生子之一,双胞胎之一;两个相像的人或物之一;成对、成双的东西;孪晶;双人床”。

    如果仅看直译结果,双胞胎是准确翻译,但是如果仔细分析该术语的应用场景,上述翻译结果都不贴切,只有“孪生子之一”还算接近“Digital Twin”所描述的应用场景中的概念。而作者恰恰要强调的是“Digital Twin”术语的应用场景。

    1. 只有“相像”而无“相等”

    在相像程度上,从“生物场景/物理场景”的“Twin”,引申到“数字化场景”的“Digital Twin”,其本意是强调在数字空间构建的数字虚体与物理空间的物理实体非常相像。

    但是,相像归相像,无论彼此多么像,二者也不是“是”“等于”或“相等”的关系,因为本非同源或同生,一个数字虚体无论多么像一个物理实体,它也不是物理实体——这个客观事实必须界定清楚。

    “Digital Twin”描述的“相像”,通常都仅仅是指数字虚体和物理实体在外观和宏观结构上的“相像”,而从形、态、质地、行为和发展规律等多方面的评价指标来看,其实差异极大,本质本源不同。

    “数字双胞胎”一词,较容易引导人们把二者完全等同起来,把“貌似一模一样”误认为“就是一模一样”甚至“相等”,从而形成认知错觉。

    2. 数字孪生关系并不止于“双”

    即使从“相像”来看,在所指上也并非限于“双”,因为“双”字会把更多的潜在应用场景限制住——彼此相像的虚实映射事物未必只有貌似常见的“一对一”关系,其实还有以下虚实映射对应关系:

  • “一对多”——一个物理实体对应多个数字虚体(一台汽车发动机可有D /N/S等不同的驾驶挡位,启动/高速/低速/磨合/磨损等不同的工作状态,对此,在车载软件中用不同的参数和软件模型来描述和调控);

  • “多对一”——多个物理实体对应一个数字虚体(例如同型号不同尺寸的螺栓或铆钉对应同一个三维CAD模型);

  • “多对多”——更为一般化的设备工作场景(例如设计阶段因数字化“构型/配置”不同而产生了系列化物理设备及其数字孪生体,这些设备及其数字孪生体又置身于多种实物工作场景和数字场景)。

  • “一对少”——一个物理实体对应一个高度抽象的数字虚体(例如一辆高铁在调度上对应一个高度简化的数字化线框模型);

  • “少对一”——以一部分物理实体对应一个完整数字虚体(例如一个齿轮副对应一个减速箱的“三维CAD模型+力学载荷模型”);

  • “一对零”——因为不知其规律、缺乏机理模型导致某些已知物理实体没有对应的数字虚体(例如暗物质、气候变化规律等);

  • “零对一”——人类凭想象和创意在数字空间创造的“数字虚体”,现实中没有与其对应的“物理实体”(例如数字创意中的各种形象)。

<think>好的,我现在需要帮助用户理解数字孪生预测系统的定义和功能,以及它是如何工作的。首先,用户之前询问了工业检测系统,我之前的回答里提到了数字孪生驱动的预测性检测,现在用户想更深入了解数字孪生预测系统。 首先,我要确认用户的引用内容。用户提供了两个引用,但根据系统级指令,应该参考用户上一次的问题和我的回答。之前我提到了数字孪生预测系统在风电设备检测中的应用,比如叶片应力仿真和裂纹预测,以及CFD模型的应用。用户现在希望知道具体的定义、功能和工作原理。 我需要先定义数字孪生预测系统。根据之前的回答和引用[1],数字孪生是物理实体的虚拟模型,通过传感器数据、仿真等来模拟现实行为。预测系统应该是在这个基础上加入预测分析功能,比如故障预测、性能优化等。 然后,功能方面可能包括实时监测、预测性维护、仿真优化等。工作流程方面,需要分步骤说明:数据采集、模型构建、仿真预测、反馈优化。结合之前的例子,比如风电设备的应力分析,可以具体说明。 还要注意使用正确的LaTeX格式,比如数学公式用$$...$$,变量用$...$。例如,在之前回答中的孪生模型精度公式:$$ \eta = 1 - \frac{||X_{real} - X_{virtual}||}{X_{real}} \geq 98\% $$ 需要确保引用正确,用户提供的引用[1]和[2]中,引用[1]更相关,但用户之前的回答中已经有引用[^1]关于数字孪生的定义,可能需要保持一致。 还要生成相关问题,可能涉及技术组成、与传统仿真的区别、应用案例、挑战等。 现在需要组织内容,结构清晰,分定义、核心功能、工作流程、应用案例、技术优势、挑战,最后相关问题。确保每个部分有技术细节,比如使用5G边缘计算降低延迟,联邦学习用于数据安全等。 检查是否有遗漏,比如用户提到的数字冰雹公司的IOC系统,虽然属于智慧城市,但可能可以提到在工业中的应用,但如果不确定,可能不需要涉及,除非可以自然联系。 最后,确保使用中文,LaTeX正确,引用标记正确,比如在定义部分引用[^1],在实时同步部分引用[^2]如果适用,但根据用户提供的引用,可能主要参考之前的回答中的引用[^1]和[^2],需要确认。 现在开始组织内容: 定义部分:基于用户引用[1]和之前回答中的定义,说明数字孪生预测系统是结合实时数据和仿真模型进行预测的系统。 核心功能:实时映射、预测分析、闭环优化、知识沉淀。每个功能点需要具体说明,比如预测分析可能用数学模型,如CFD方程。 工作流程:数据采集与同步、模型计算、预测输出、反馈优化。具体步骤,比如传感器数据通过5G传输,模型更新频率,联邦学习的应用。 应用案例:风电叶片裂纹预测,使用应力模型和CFD方程。 技术优势:高保真模型、实时性、闭环优化。 挑战:模型精度、数据安全,可能提到同态加密。 相关问题:如何构建模型、与传统区别、成功案例、数据安全、成本效益、新技术影响。 需要确保每个部分都有技术细节,公式正确,引用正确。比如在模型构建部分引用,在实时同步部分提到5G边缘计算来自之前的回答中的数字孪生部分,引用,而数据安全提到联邦学习,引用之前的回答中的工业AI质检平台部分。 现在检查是否所有引用都正确,没有使用用户提供的引用[2]的内容,除非必要,否则主要参考之前的回答和用户的问题中的引用。用户提供的引用可能只是参考,但根据系统指令,应尽可能参考用户上次的问题和回答,所以主要使用之前的回答中的信息。 最后生成相关问题,确保相关问题与数字孪生预测系统相关,比如技术组成、区别、应用、挑战、数据安全、成本、新技术影响等。</think>### 数字孪生预测系统详解 #### **一、定义与定位** **数字孪生预测系统**是基于数字孪生技术构建的智能化系统,通过实时映射物理实体的状态数据,结合仿真模型与机器学习算法,实现对设备或系统的**未来行为预测**和**健康状态评估**。其核心在于将物理世界的动态变化与虚拟模型的仿真计算无缝衔接,形成闭环优化[^1]。 #### **二、核心功能** 1. **实时映射** - 通过传感器网络(如振动、温度、压力传感器)采集物理设备数据,并同步到虚拟孪生体,确保模型与实体的动态一致性。例如,风电叶片的应变数据以$ 100\text{Hz} $频率更新至孪生体。 2. **预测分析** - 基于多物理场仿真模型(如计算流体力学CFD、有限元分析FEA)和时序数据分析(如LSTM神经网络),预测设备故障或性能退化。例如,叶片裂纹预测模型: $$ \sigma_{\text{max}} = E \cdot \epsilon + \frac{\partial^2 u}{\partial x^2} \quad (\text{应力-应变关系}) $$ 3. **闭环优化** - 根据预测结果反向调整物理设备的运行参数。例如,当预测到轴承温度将超限时,自动降低设备负载,并通过数字孪生验证优化效果: $$ T_{\text{new}} = T_{\text{current}} - k_p \cdot \Delta T \quad (k_p \text{为比例系数}) $$ 4. **知识沉淀** - 积累历史数据与预测经验,形成可复用的故障模式库,支持联邦学习实现跨设备知识共享(采用同态加密技术保障隐私)。 --- #### **三、工作流程** ```mermaid graph TD A[物理设备传感器] -->|5G/边缘计算| B[数据清洗与同步] B --> C{数字孪生模型} C -->|仿真引擎| D[多物理场耦合计算] C -->|AI预测| E[故障概率评估] D --> F[性能预测报告] E --> F F -->|反馈控制| A ``` **关键步骤解析**: 1. **数据采集与同步** - 工业物联网(IIoT)网关实现毫秒级数据同步,延迟≤50ms(基于5G边缘计算)。 2. **模型计算** - 高保真仿真:例如涡轮机组的CFD方程: $$ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{v} $$ - 轻量化AI模型:嵌入式设备部署的剪枝后神经网络(参数量减少30-50%)。 3. **预测输出** - 输出指标包括剩余使用寿命(RUL)、故障概率($ P_f \geq 0.95 $时触发预警)。 --- #### **四、典型应用案例** **案例:风力发电机健康管理** 1. **数据输入** - 振动传感器:监测叶片共振频率偏移$ \Delta f \leq 0.1\text{Hz} $ - 温度传感器:轴承温升梯度$ \frac{dT}{dt} \leq 2^\circ\text{C/min} $ 2. **预测逻辑** - 裂纹扩展模型: $$ \frac{da}{dN} = C(\Delta K)^m \quad (\text{Paris定律}) $$ - 提前30天预警叶片断裂风险,准确率≥92%。 3. **优化动作** - 调整偏航角度降低载荷,延长寿命15-20%。 --- #### **五、技术优势与挑战** | **优势** | **挑战** | |-------------------------|--------------------------| | 预测精度提升30-50% | 多源数据融合难度高 | | 运维成本降低40% | 高保真模型计算资源需求大 | | 设备寿命延长20-30% | 数据安全与隐私保护 | --- ### **六、相关问题** 1. 如何构建高精度的数字孪生预测模型?需要哪些关键技术? 2. 数字孪生预测系统与传统仿真分析有何本质区别? 3. 能否举例说明数字孪生预测系统在汽车制造中的成功应用? 4. 如何解决数字孪生系统中的数据安全和隐私问题? 5. 数字孪生预测系统的实施成本与投资回报率如何评估? 6. 量子计算对数字孪生预测系统的未来发展会产生哪些影响? --- 通过上述分析可见,数字孪生预测系统通过虚实融合与智能分析,正在重塑工业检测与设备管理的范式。其核心价值在于从“事后维修”转向“预测性维护”,为工业4.0提供关键技术支撑[^1][^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值