1、什么是矩阵的条件数?
矩阵A的条件数等于A的范数与其逆矩阵的范数的乘积,是判断矩阵病态与否的一种度量,条件数越大则矩阵越病态。
基本语法:
分析:
(1)LA.cond(a):
这行代码计算了矩阵a
的2-范数条件数。在NumPy中,linalg.cond(x)
函数默认计算矩阵的2-范数条件数,即最大的奇异值与最小的奇异值的比值。
(2)在NumPy中,linalg.cond(x)
函数默认计算矩阵的2-范数条件数,即最大的奇异值与最小的奇异值的比值。
(3)LA.cond(a,np.inf)
这行代码计算了矩阵a
的无穷范数条件数。无穷范数是矩阵的最大绝对行和,而无穷范数条件数是矩阵的无穷范数与它的逆矩阵的无穷范数的乘积。
LA.cond(a,-np.inf)
这行代码计算了矩阵a
的负无穷范数条件数。负无穷范数是矩阵的最小绝对行和,而负无穷范数条件数是矩阵的负无穷范数与它的逆矩阵的负无穷范数的乘积。
(4)LA.cond(a,1)
这1-范数是矩阵的最大绝对列和,而1-范数条件数是矩阵的1-范数与它的逆矩阵的1-范数的乘积。
LA.cond(a,-1)
负1-范数是矩阵的最小绝对列和,而负1-范数条件数是矩阵的负1-范数与它的逆矩阵的负1-范数的乘积。
(5)负2-范数通常不被使用,因为对于实矩阵,2-范数和负2-范数是相同的。
2、为什么要使用范式?为什么默认使用2-范数?
使用范式是为了量化数值问题的敏感性和稳定性。条件数定义为矩阵的范数与其逆矩阵的范数的乘积,这量化了输入数据的微小变化在输出中可能被放大的程度;条件数高意味着矩阵接近奇异(即行列式接近零),这表明矩阵对输入数据的变化非常敏感,这种敏感性可能导致数值计算中的不稳定性和不精确性,特别是在解线性方程组或进行矩阵求逆时。
2-范数通常比其他范数(如1-范数或无穷范数)更数值稳定。它不太可能受到异常值的影响。并且在几何意义中,2-范数对应于欧几里得距离,这是最直观的距离度量方式。它测量了向量在n维空间中的“长度”,并在许多几何和物理问题中自然出现。
*范式分为:(1)向量范数:向量范数是给向量空间中的每个向量赋予一个非负长度或大小的函数 。(2)矩阵范数:矩阵范数是用来度量矩阵引起的变化大小的函数 。
3、条件数的特征:
条件数反映了矩阵计算对于误差的敏感性。 对于线型方程组Ax=b,如果A的条件数大,b的微小改变就能引起解 x 较大的改变,数值稳定性差。如果A的条件数小,b有微小的改变,x的改变也很微小,数值稳定性好。条件数也可以表示b不变而A有微小改变时,x的变化情况。
稍微改变了向量
b
的值,从[0.7, 1]
变为[0.71, 0.99]
。表示线性方程组的解从x = [0.0, 0.1]变为
x = [0.17, -0.02]
。由结果变化可以看出:当矩阵a
的条件数太大时,意味着矩阵相对不稳定,即输入数据的小变化会导致解的大幅变化。
稍微改变了向量
b
的值,从[0.7, 1]
变为[0.71, 0.99]
。表示线性方程组的解从x = [1.1, -0.4]变为
x = [1.14, -0.43]
。由结果变化可以看出:当矩阵a
的条件数不太大时,意味着矩阵相对稳定,对输入数据的小变化不会很敏感。
4、特殊情况说明:
矩阵A为奇异矩阵时条件数为无穷大,这时即使不改变b,x也可以任意改变。奇异矩阵的本质原因在于矩阵有0特征值。(在几何意义上,x在对应特征向量的方向上运动不改变Ax的值。如果一个特征值比其他特征值在数量级上小很多,x在对应特征向量方向上很大的移动才能产生b微小的变化。)
条件数越大,矩阵越接近一个奇异矩阵(不可逆矩阵),矩阵越“病态”。在数值计算中,矩阵的条件数越大,计算的误差越大,精度越低。条件数很大的矩阵会对测量值的扰动非常敏感,对噪声的鲁棒性比较低。
第一个矩阵:条件数非常大,接近于无限。这表明矩阵接近奇异,意味着它没有逆矩阵,或者逆矩阵的数值不稳定。在实际应用中,这意味着即使微小的输入变化也可能导致解的大幅变化。
第二个矩阵:条件数是无限的。这是因为零矩阵没有满秩,它不能被求逆,其所有行和列都是线性相关的。
5、使用条件数的好处:
(1)评估数值稳定:高条件数意味着数值解可能不稳定。
(2)指导算法选择:在解决病态问题时,了解矩阵的条件数可以帮助我们选择更稳健的数值算法,以减少计算误差。
(3)误差估计:条件数可以用来估计求解线性方程组时的误差范围。如果条件数很大,即使输入数据非常精确,解也可能有较大的误差。
(4)特征值问题:条件数可以帮助我们了解特征值和特征向量的计算精度,特别是在处理大型矩阵时。
(5)优化问题:在优化问题中,条件数可以用来评估目标函数的曲率,从而影响优化算法的选择和收敛速度。
(6)机器学习模型:在机器学习中,条件数可以用来评估模型参数的敏感度,特别是在使用线性模型如线性回归时。
*(7)信号处理:在信号处理中,条件数可以用来评估信号恢复的稳定性,特别是在去噪或压缩感知中。
*(8)控制理论:在控制理论中,条件数可以用来评估系统的可控性和可观测性。
*(9)经济模型:在经济学中,条件数可以用来评估模型参数的敏感度,从而影响经济政策的制定。
总的来说,条件数是一个重要的数值分析工具,它可以帮助我们更好地理解和处理数值计算中可能出现的不稳定性问题。通过计算条件数,可以采取适当的措施来提高计算的准确性和可靠性。
*6、什么是奇异矩阵?(了解)
在数学中,奇异矩阵是指一个方阵(即行数和列数相等的矩阵)其行列式为0。这意味着该矩阵没有逆矩阵,也就是说,不存在另一个矩阵,使得原矩阵与该矩阵相乘的结果是单位矩阵。
奇异矩阵的性质包括:
(1)不可逆:奇异矩阵没有逆矩阵。
(2)线性相关:矩阵的行向量或列向量是线性相关的。
(3)秩不足:矩阵的秩小于其维度(即行数或列数)。
(4)零空间非平凡:存在非零向量 xx 使得 Ax=0Ax=0。
(5)在解线性方程组时,如果系数矩阵是奇异的,那么该方程组要么无解,要么有无穷多解。
7、所使用到的范式:(这些范数是衡量矩阵大小或“影响”的不同方式)
(1)1-范数(曼哈顿距离):计算矩阵所有元素的绝对值之和。
(2)2-范数(欧几里得距离):计算矩阵所有元素差的平方和的平方根。
(3)无穷大范数(最大范数):计算矩阵所有元素的最大值。在MATLAB中,这通过norm(A, Inf)
实现。
*8、与传统数学方法的区别:
数据分析:在数据分析中,条件数通常用于衡量一个线性方程组的解对输入数据误差的敏感性。高条件数意味着输入数据的微小变化可能导致输出结果的巨大波动 传统数学:在传统数学中,条件数更多地与函数或问题的适定性相关,它描述了一个问题的解对初始条件变化的敏感程度。