离散数学期末笔记

命题逻辑

命题及其表示法

推理的前提和结论都是表达判断的陈述句。

命题:有确定真值的陈述句

分类:

原子命题:不能分解为更简单的陈述句。

复合命题:若干个原子命题、连词、标点符号

命题连接词

命题公式和翻译

命题常元:真值唯一,确定,例如:T、F

命题变元: P、Q、R
命题联结词:^

合式公式:合法的命题公式,需要规定优先级

运算规定:

真值表与等价艺术

真值表:对于分量指派真值的各种可能组合

基本等价公式

等价置换:设X为合式公式A的子公式,若X等价 Y,如果用Y置换A
中的X,得到公式B,则A等价B。

重言式与蕴含式

重言式:永为T 矛盾式F

蕴含式

主析取范式

最小联结词 否 析取 合取(小项)

没有两个小项是等价的,且每个小项都只对应P和Q的
组真值指派,使得该小项的真值为T。

直接证法

P规则(前提引入规则):在推导过程中,前提可视需要引入使用。前提
可以用在证明过程中的任何步骤中。
T规则(结论引入规则):在推导中,如果有一个或多个公式、重言蕴含
着公式S,则公式S可以引入推导之中。

条件论证

如果要证明的结论是R→S的形式,则可
以把结论中R→S的前件R作为附加前提,与
给定的前提一起推出后件S即可。

谓词逻辑

约定用大写字母表示谓词。
用小写字母表示客体名称。
小写字母写在大写字母右侧的圆括号( )内。

注意: A(x)本身不是命题, x取具体的客体时为一个命题。

个体域

客体变元的论述范围称作个体域。
把各个个体域综合在一起作为论述范围的域称全总个体域。

变元

        

谓词公式的赋值

在谓词公式中,当客体变元由确定的客体所取代,命题变元
用确定的命题所取代时,就称作对谓词公式赋值。 

前束范式

一个公式,如果量词均在全式的开头,它们的作用域,
延伸到整个公式的末尾,该公式叫做前束范式。

求解办法:

第一步:否定深入。即利用量词转化公式,把否定联结词深入
到命题变元和谓词填式的前面。
第二步:改名。即利用换名规则、代入规则更换一些变元的名
称,以便消除混乱。
第三步:量词前移。即利用量词辖域的收缩与扩张把量词移到
前面。这样便可求出与公式等价的前束范式。

量词

消去

全称量词消去规则(US)规则

存在量词消去规则(ES)规则

集合与关系

集合的关系

相等:两个集合A和B相等当且仅当它们具有相同的元素。

包含

真包含:如果集合A的每一个元素都属于B ,但集合B中至少有一个元素
不属于A,则称A为B的真子集,记作AcB

幂集:

集合的运算

交运算
并运算
差运算


对称差运算

运算律:

序偶与笛卡尔积

序偶:两个具有固定次序的客体组成一个序偶。常表示两个客体之间的关系。

笛卡尔积:定义:设A和B是任意两个集合,由A中元素作第一元素,B 中元素作第二元素
构成序偶,所有这样序偶的集合称集合A和B的笛卡尔积或直积,记作: AxB

性质:

前域和值域

R的前域和值域一起称作的域,记作FLD R。

关系

定义

XxY称为X到Y的全域关系,记作U。
0称为空关系。

关系的表示方法

有向图法:

矩阵表示法:

关系的性质

自反与反自反性

对称与反对称性

反对称性
传递性

复合关系和逆关系

        复合关系:

关系图表示:

矩阵表示:

逆关系:

关系的闭包运算

求解方法:

集合的划分与涵盖

覆盖:若把一个集合A分成若干个叫做分块的非空集合,使得A中每个元
素至少属于一个分块,那么这些分块的全体构成的集合叫做A的一个覆盖。

划分:如果A中每个元素属于且仅属于一个分块,那么这些分块的全体构成的集
合叫做A的一个划分(或分划)。

交叉划分:

加细:

任何两种划分的交叉划分,都是原来各划分的一
种加细。

等价关系和等价类

等价关系:设R为集合A上的二元关系,若R是自反的、对称的和传递的,则
称R为等价关系。
等价类


商集

相容关系

相容关系:设集合A上的关系R,若R是自反的、对称的,则称R为相容关系。

相容类

最大相容类:

最大完全多边形

完全覆盖:

序关系

偏序关系


盖住集合


链和反链

全序.

极大元极小元

若只有一个极大元则为最大元

上确界:所有上界中的最小者,最小上界:
下确界:所有下界中的最大者, 最大下界:

函数

函数的概念

函数的数量

概念的分类

满射:对于f: X→Y的映射中,如果ran f=Y,即Y的每一个元素是X中一个或多个元素的象点,则称这个映射为满射。

满射: | ran f|=|Y|。值域和y相等
入射:从X到Y的映射中,X中没有两个元素有相同的象,则称这个映射为入射(或一对一映射)
双射:如果f既是X到Y的入射,又是X到Y的满射,则称f为X到Y的双射函数。双射函数也称一一对应。

双射: | X|= |f(X)|= | Y|。

逆函数和复合函数

每一个函数的逆关系都存在,逆关系不一定是函数。

复合函数

两个函数的复合是一个函数。

性质

代数结构

上述例子中的运算结果都是在原来的集合中,我们称那
些具有这种特征的运算是封闭的,简称闭运算。相反的,
没有这种特征的运算就是不封闭的。

运算的表示

解析公式运算表

代数系统

运算的性质

设*是定义在集合A上的二元运算,
如果对任意x,y∈A,都有x*y∈A,则称运算*在A上是封闭的。

幂等律

特殊元素

幺元

零元

逆元

定理

总结

半群

子半群

是一个半群,如果S是一一个有限集,则必有等幂元

独异点

含有幺元的半群称为含幺半群或独异点。

群和子集

设<G, *>是一个代数系统,其中G是非空集合,*是G上一
个二元运算,如果

群的性质

群中无零元

满足消去律

置换

群<G, *>的运算表中的每一行或每一列都是G的元素的一个置换。

子群

平凡子群

一个最多 一个最少

设<G, *>是一个群,B是G的非空子集,
如果B 是一个有限集,那么,只要运算*在B.上封闭,<B, *>必定是<G, *>的子群。

阿贝尔群和循环群

如果群<G, *>中的运算*是可交换的,则称该群为阿贝尔群,或称交换群

设<G, *>为群,若在G中存在一个元素a,使得G中的任意元素都由a的幂组成,则称该群为循环群,元素a称为循环群G的生成

任何一个循环群必定是阿贝尔群。

图论

图的基本概念

无向图:每条边均为无向边的图称为无向图。
有向图:每条边均为有向边的图称为有向图。
混合图:有些边是无向边,有些边是有向边的图称为混合图。

度数

在图G=<V, E>中,与结点v关联的边数称为该结点的度数
点的度数,记为deg(v)。孤立结点的度数为0。环为2

握手定理

每个图中,结点度数总和等于边数的两倍。

在有向图中,射入一个节点的边数称为该节点的入度;由一个节点射出的边数称为该结点的出度。节点的出度和入度之和就是该节点的度数。

特殊的图

多重图:含有平行边的图称为多重图。
简单图:不含平行边和环的图称为简单图。
完全图:简单图G=<V, E>中,若每一对结点间均有边相连,则称
该图为完全图。有n个结点的无向完全图记为Kn。        

补图

子图

点相同时为生成子图

相对补图        

同构

必要条件

结点数目相同;
边数相等;
度数相同的结点数目相等。

路与回路

定义

v0和vn,分别叫做路的起点和终点,边的数目n称作路的长度

图的连通性

若图G只有一个连通分支,则称G是连通图。

删除结点:所谓在图中删除结点v,即是把v以及与v关联的边都删除。
删除边:所谓在图中删除某条边,即是把该边删除。

点连通度

边连通度

有向图的连通性

定理

图的矩阵表示

无向图

有向图

关联矩阵

有向图

欧拉图与汉密尔顿图

欧拉图

给定无孤立结点图G ,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉路;若存在一条回路,经过图中每边一次且仅一次,该回路称为欧拉回路。具有欧拉回路的图称为欧拉图。

无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或两个奇数度结点。

无向图G具有一条欧拉回路,当且仅当G连通且所
有结点度数皆为偶数。

单项欧拉回路

哈密尔顿图

充分条件

图的闭包

平面图

设G=<V,E>是一个无向图,如果能够把G的所有结点和边画
在一个平面上,且使得任何两条边除了结点外没有其他的交点,就称G是
一个平面图,否则称G为非平面图。

面边界

一个有限平面图,面的次数之和等于其边数的两倍。

欧拉定理

同胚

树与生成树

树的定义

在给定结点的无向图中:树是边数最少的连通图,树是边数最多的无回路图。

生成树

生成树的存在性

权图

根树及其应用

根树

有向树

如果一个有向图在不考虑边的方向时是一棵树,那么该有向图称为有向树。

一棵有向树,如果恰有一个结点的入度为0,其余所有结点的入度都为1 ,则称为根树(rooted tree)。入度为0的结点称为T的树根。出度为0的结点称为树叶,出度不为0的结点称为分支点或内点

树高

习惯把有向树的根画在最上方,边的箭头全指向下,则可以省略全部箭头,
对根到一个结点的有向通路的长度称为该点的层数。所有结点的最大层数称为树高。

相关定义

在根树中,若每个结点的出度小于或等于m, 则称这棵树为m叉树
如果每个结点的出度恰好等于0或m,则称这棵树为完全m叉树。

二叉树(binary tree )的每个结点v至多有两棵子树, 分别称为v的左子树和右子树。

 性质 

设有完全m叉树,其树叶的数目为t,分支数为i,则(m-1)xi=t-1。

设n为节点数n= m*i+1

设t为叶子节点, n=t+i

通路长度

在根树中, 一个结点的通路长度,就是从树根到该结点的通路中的边数。分支点的通路长度称为内部通路长度,树叶的通路长度称为外部通路长度

设有完全二叉树有n个分支点,且内部通路长度总和为I,外部通
路长度总和为E,则E=I+2n。

最优树

哈夫曼算法

哈夫曼编码

前缀码

给定一个序列的集合,若没有一个序列是另一个序列的前缀,该序列集合称为前缀码。

例如: {0,10,110, 1111}是(2元)前缀码。

任意一棵二叉树的树叶可对应一个前缀码。

  • 30
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值