题目链接
题目描述
给定一个未排序的整数数组 nums
, 返回最长递增子序列的个数 。
注意 这个数列必须是 严格 递增的。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
提示:
- 1 < = n u m s . l e n g t h ≤ 2000 1 <= nums.length \leq 2000 1<=nums.length≤2000
- − 1 0 6 ≤ n u m s [ i ] ≤ 1 0 6 -10^6 \leq nums[i] \leq 10^6 −106≤nums[i]≤106
解法一:
本题是最长递增子序列的一道拓展题,可以先尝试一下求解这道题:Leetcode.300 最长递增子序列
本题也可以使用动态规划求解。
我们分别使用两个数组 dp 和 c n t cnt cnt 记录状态:
- d p [ i ] dp[i] dp[i] 表示以 n u m s [ i ] nums[i] nums[i] 结尾的最长递增子序列的长度;
- c n t [ i ] cnt[i] cnt[i] 表示以 n u m s [ i ] nums[i] nums[i] 结尾的最长递增子序列的个数;
按照定义,如果 n u m s nums nums 中最长递增子序列的长度为 m a x L e n maxLen maxLen ,初始时 a n s = 0 ans = 0 ans=0,在遍历的过程中如果 d p [ i ] = m a x L e n dp[i] = maxLen dp[i]=maxLen , 说明此时 以 n u m s [ i ] nums[i] nums[i] 结尾的最长上升子序列的长度 就是 整个数组中最大的,那么 ans 就加上 以 n u m s [ i ] nums[i] nums[i] 结尾的最长上升子序列的个数 c n t [ i ] cnt[i] cnt[i]。遍历结束, a n s ans ans就是答案。
状态转移:
n
u
m
s
[
j
]
<
n
u
m
s
[
i
]
(
i
<
j
)
nums[j] < nums[i] (i<j)
nums[j]<nums[i](i<j) 的情况下:
- 当
d
p
[
j
]
+
1
>
d
p
[
i
]
dp[j] + 1 > dp[i]
dp[j]+1>dp[i] 时,说明找到了一个更大的递增子序列,
d
p
[
i
]
=
d
p
[
j
]
+
1
,
c
n
t
[
i
]
=
c
n
t
[
j
]
dp[i] = dp[j] + 1,cnt[i] = cnt[j]
dp[i]=dp[j]+1,cnt[i]=cnt[j] (此时以
nums[i]
为结尾的最长递增子序列的个数,更新为 以nums[j]
为结尾的最长递增子序列的个数) - 当 d p [ j ] + 1 = = d p [ i ] dp[j] + 1 == dp[i] dp[j]+1==dp[i] 时,说明找到了两个长度相同的递增子序列,所以此时只需要更新: c n t [ i ] = c n t [ i ] + c n t [ j ] cnt[i] = cnt[i] + cnt[j] cnt[i]=cnt[i]+cnt[j]
时间复杂度: O ( n 2 ) O(n^2) O(n2)
C++代码:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> f(n,1),cnt(n,1);
int maxLen = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < i;j++){
if(nums[j] < nums[i]){
if(f[j] + 1 > f[i]){
f[i] = f[j] + 1;
cnt[i] = cnt[j];
}
else if(f[j] + 1 == f[i]){
cnt[i] += cnt[j];
}
}
}
maxLen = max(maxLen,f[i]);
}
int ans = 0;
for(int i = 0;i < n;i++){
if(maxLen == f[i]) ans += cnt[i];
}
return ans;
}
};
Java代码:
class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
int[] f = new int[n];
int[] cnt = new int[n];
//初始的时候 f 和 cnt 中每一个元素都是1
Arrays.fill(f,1);
Arrays.fill(cnt,1);
int maxCount = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < i;j++){
if(nums[i] > nums[j]){
if(f[j] + 1 > f[i]){
f[i] = f[j] + 1;
cnt[i] = cnt[j];
}
else if(f[j] + 1 == f[i]){
cnt[i] += cnt[j];
}
}
}
//记录 整个数组中 最大的递增子序列的长度
maxCount = Math.max(maxCount,f[i]);
}
int ans = 0;
for(int i = 0;i < n;i++){
if(maxCount == f[i]) ans += cnt[i];
}
return ans;
}
}