Leetcodd.673 最长递增子序列的个数

文章介绍了LeetCode第673题的解决方案,该题要求找到未排序整数数组中的最长递增子序列的个数。解法使用了动态规划,维护dp和cnt两个数组,分别记录以每个数字结尾的最长递增子序列的长度和个数。通过遍历数组更新这两个数组,并最终计算最长递增子序列的个数。
摘要由CSDN通过智能技术生成

题目链接

Leetcode.673 最长递增子序列的个数 mid

题目描述

给定一个未排序的整数数组 nums, 返回最长递增子序列的个数

注意 这个数列必须是 严格 递增的。

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

提示:
  • 1 < = n u m s . l e n g t h ≤ 2000 1 <= nums.length \leq 2000 1<=nums.length2000
  • − 1 0 6 ≤ n u m s [ i ] ≤ 1 0 6 -10^6 \leq nums[i] \leq 10^6 106nums[i]106

解法一:

本题是最长递增子序列的一道拓展题,可以先尝试一下求解这道题:Leetcode.300 最长递增子序列

本题也可以使用动态规划求解。

我们分别使用两个数组 dp 和 c n t cnt cnt 记录状态:

  • d p [ i ] dp[i] dp[i] 表示以 n u m s [ i ] nums[i] nums[i] 结尾的最长递增子序列的长度;
  • c n t [ i ] cnt[i] cnt[i] 表示以 n u m s [ i ] nums[i] nums[i] 结尾的最长递增子序列的个数;

按照定义,如果 n u m s nums nums 中最长递增子序列的长度为 m a x L e n maxLen maxLen ,初始时 a n s = 0 ans = 0 ans=0,在遍历的过程中如果 d p [ i ] = m a x L e n dp[i] = maxLen dp[i]=maxLen , 说明此时 n u m s [ i ] nums[i] nums[i] 结尾的最长上升子序列的长度 就是 整个数组中最大的,那么 ans 就加上 n u m s [ i ] nums[i] nums[i] 结尾的最长上升子序列的个数 c n t [ i ] cnt[i] cnt[i]。遍历结束, a n s ans ans就是答案。

状态转移:
n u m s [ j ] < n u m s [ i ] ( i < j ) nums[j] < nums[i] (i<j) nums[j]<nums[i](i<j) 的情况下:

  • d p [ j ] + 1 > d p [ i ] dp[j] + 1 > dp[i] dp[j]+1>dp[i] 时,说明找到了一个更大的递增子序列 d p [ i ] = d p [ j ] + 1 , c n t [ i ] = c n t [ j ] dp[i] = dp[j] + 1,cnt[i] = cnt[j] dp[i]=dp[j]+1,cnt[i]=cnt[j] (此时以 nums[i]为结尾的最长递增子序列的个数,更新为 以 nums[j]为结尾的最长递增子序列的个数)
  • d p [ j ] + 1 = = d p [ i ] dp[j] + 1 == dp[i] dp[j]+1==dp[i] 时,说明找到了两个长度相同的递增子序列,所以此时只需要更新: c n t [ i ] = c n t [ i ] + c n t [ j ] cnt[i] = cnt[i] + cnt[j] cnt[i]=cnt[i]+cnt[j]

时间复杂度: O ( n 2 ) O(n^2) O(n2)

C++代码:

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();

        vector<int> f(n,1),cnt(n,1);

        int maxLen = 0;
        for(int i = 0;i < n;i++){
            for(int j = 0;j < i;j++){
               if(nums[j] < nums[i]){
                   if(f[j] + 1 > f[i]){
                       f[i] = f[j] + 1;
                       cnt[i] = cnt[j];
                   }
                   else if(f[j] + 1 == f[i]){
                       cnt[i] += cnt[j];
                   }
               }
            }
            maxLen = max(maxLen,f[i]);
        }

        int ans = 0;
        for(int i = 0;i < n;i++){
            if(maxLen == f[i]) ans += cnt[i];
        }
        return ans;
    }
};

Java代码:

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] cnt = new int[n];
        //初始的时候 f 和 cnt 中每一个元素都是1
        
        Arrays.fill(f,1);
        Arrays.fill(cnt,1);

        int maxCount = 0;

        for(int i = 0;i < n;i++){
            for(int j = 0;j < i;j++){
                if(nums[i] > nums[j]){
                    if(f[j] + 1 > f[i]){
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    }
                    else if(f[j] + 1 == f[i]){
                        cnt[i] += cnt[j];
                    }
                }
            }
            //记录 整个数组中 最大的递增子序列的长度
            maxCount = Math.max(maxCount,f[i]);
        }

        int ans = 0;
 
        for(int i = 0;i < n;i++){
            if(maxCount == f[i]) ans += cnt[i];
        }

        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值