189A — Cut Ribbon

题目链接

189A — Cut Ribbon Rating : 1300

题目描述

Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions:

  • After the cutting each ribbon piece should have length a , b , c a, b , c a,b,c.
  • After the cutting the number of ribbon pieces should be maximum.

Help Polycarpus and find the number of ribbon pieces after the required cutting.

Input

The first line contains four space-separated integers n , a , b n, a, b n,a,b and c ( 1   ≤   n ,   a ,   b ,   c   ≤   4000 ) c (1 ≤ n, a, b, c ≤ 4000) c(1 n,a,b,c 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.

Output

Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.

inputCopy

5 5 3 2

outputCopy

2

inputCopy

7 5 5 2

outputCopy

2

大致题意:
给你一根长度为 n的带子,只能将这根带子裁剪成长度为 a,b,c的小段,问最多能裁剪成多少段。

分析:

我们使用 动态规划 解决。 定义 f ( i ) f(i) f(i) 为裁剪长度为 i的带子的最大段数,所以答案返回 f ( n ) f(n) f(n)

接着我们分别对 长度a,b,c进行 动态规划即可(为了方便),当然也可以一起处理,但是这样需要注意一些边界问题。

时间复杂度 O ( n ) O(n) O(n)

代码:

#include <iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<cmath>
#include<unordered_map>


using namespace std;
using LL = long long;



const int N = 4010;

int f[N];


void solve(){
    int n,a,b,c;
    scanf("%d%d%d%d",&n,&a,&b,&c);
    
    memset(f,0xcf,sizeof f);
    
    f[0] = 0;
    
    for(int i = a;i <= n;i++) f[i] = max(f[i],f[i-a]+1);
    for(int i = b;i <= n;i++) f[i] = max(f[i],f[i-b]+1);
    for(int i = c;i <= n;i++) f[i] = max(f[i],f[i-c]+1);
    
    printf("%d\n",f[n]);
}

int main() {
  
  solve();
  return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值