题目链接
189A — Cut Ribbon Rating : 1300
题目描述
Polycarpus has a ribbon, its length is n
. He wants to cut the ribbon in a way that fulfils the following two conditions:
- After the cutting each ribbon piece should have length a , b , c a, b , c a,b,c.
- After the cutting the number of ribbon pieces should be maximum.
Help Polycarpus and find the number of ribbon pieces after the required cutting.
Input
The first line contains four space-separated integers n , a , b n, a, b n,a,b and c ( 1 ≤ n , a , b , c ≤ 4000 ) c (1 ≤ n, a, b, c ≤ 4000) c(1 ≤ n, a, b, c ≤ 4000) — the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.
Output
Print a single number — the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.
inputCopy
5 5 3 2
outputCopy
2
inputCopy
7 5 5 2
outputCopy
2
大致题意:
给你一根长度为 n
的带子,只能将这根带子裁剪成长度为 a,b,c
的小段,问最多能裁剪成多少段。
分析:
我们使用 动态规划 解决。 定义
f
(
i
)
f(i)
f(i) 为裁剪长度为 i
的带子的最大段数,所以答案返回
f
(
n
)
f(n)
f(n)。
接着我们分别对 长度a,b,c
进行 动态规划即可(为了方便),当然也可以一起处理,但是这样需要注意一些边界问题。
时间复杂度: O ( n ) O(n) O(n)
代码:
#include <iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<cmath>
#include<unordered_map>
using namespace std;
using LL = long long;
const int N = 4010;
int f[N];
void solve(){
int n,a,b,c;
scanf("%d%d%d%d",&n,&a,&b,&c);
memset(f,0xcf,sizeof f);
f[0] = 0;
for(int i = a;i <= n;i++) f[i] = max(f[i],f[i-a]+1);
for(int i = b;i <= n;i++) f[i] = max(f[i],f[i-b]+1);
for(int i = c;i <= n;i++) f[i] = max(f[i],f[i-c]+1);
printf("%d\n",f[n]);
}
int main() {
solve();
return 0;
}