题目链接
Leetcode.853 车队 Rating : 1678
题目描述
在一条单行道上,有 n 辆车开往同一目的地。目的地是几英里以外的 t a r g e t target target 。
给定两个整数数组 p o s i t i o n position position 和 s p e e d speed speed ,长度都是 n ,其中 p o s i t i o n [ i ] position[i] position[i] 是第 i 辆车的位置, s p e e d [ i ] speed[i] speed[i] 是第 i 辆车的速度(单位是英里/小时)。
一辆车永远不会超过前面的另一辆车,但它可以追上去,并与前车 以相同的速度 紧接着行驶。此时,我们会忽略这两辆车之间的距离,也就是说,它们被假定处于相同的位置。
车队 是一些由行驶在相同位置、具有相同速度的车组成的非空集合。注意,一辆车也可以是一个车队。
即便一辆车在目的地才赶上了一个车队,它们仍然会被视作是同一个车队。
返回到达目的地的 车队数量 。
示例 1:
输入:target = 12, position = [10,8,0,5,3], speed = [2,4,1,1,3]
输出:3
解释:
从 10 和 8 开始的车会组成一个车队,它们在 12 处相遇。
从 0 处开始的车无法追上其它车,所以它自己就是一个车队。
从 5 和 3 开始的车会组成一个车队,它们在 6 处相遇。
请注意,在到达目的地之前没有其它车会遇到这些车队,所以答案是 3。
示例 2:
输入: target = 10, position = [3], speed = [3]
输出: 1
解释: 只有一辆车,因此只有一个车队。
示例 3:
输入: target = 100, position = [0,2,4], speed = [4,2,1]
输出: 1
解释:
以0(速度4)和2(速度2)出发的车辆组成车队,在4点相遇。舰队以2的速度前进。
然后,车队(速度2)和以4(速度1)出发的汽车组成一个车队,在6点相遇。舰队以1的速度前进,直到到达目标。
提示:
- n = = p o s i t i o n . l e n g t h = = s p e e d . l e n g t h n == position.length == speed.length n==position.length==speed.length
- 1 < = n < = 1 0 5 1 <= n <= 10^5 1<=n<=105
- 0 < t a r g e t < = 1 0 6 0 < target <= 10^6 0<target<=106
- 0 < = p o s i t i o n [ i ] < t a r g e t 0 <= position[i] < target 0<=position[i]<target
- p o s i t i o n position position 中每个值都 不同
- 0 < s p e e d [ i ] < = 1 0 6 0 < speed[i] <= 10^6 0<speed[i]<=106
解法:排序 & 贪心
将 ( p o s i t i o n [ i ] , s p e e d [ i ] ) (position[i],speed[i]) (position[i],speed[i]) 组成的二元组 a a a,按 p o s i t i o n [ i ] position[i] position[i] 从大到小排序,说明越前面的车离终点越近。
定义 p 1 = a [ 0 ] . f i r s t , s 1 = a [ 0 ] . s e c o n d p1 = a[0].first , s1 = a[0].second p1=a[0].first,s1=a[0].second;
定义 p 2 = a [ i ] . f i r s t , s 2 = a [ i ] . s e c o n d , ( 1 ≤ i < n ) p2 = a[i].first , s2 = a[i].second ,(1 \leq i < n) p2=a[i].first,s2=a[i].second,(1≤i<n);
第一辆车到达 t a r g e t target target 的时间 t 1 = ( t a r g e t − p 1 ) / s 1 t1 = (target - p1) / s1 t1=(target−p1)/s1;
第二辆车到达 t a r g e t target target 的时间 t 2 = ( t a r g e t − p 2 ) / s 2 t2 = (target - p2) / s2 t2=(target−p2)/s2;
当 t 1 < t 2 = > ( t a r g e t − p 1 ) / s 1 < ( t a r g e t − p 2 ) / s 2 t1 < t2 => (target - p1) / s1 < (target - p2) / s2 t1<t2=>(target−p1)/s1<(target−p2)/s2 时,说明第二辆车 追不上 第一辆车,故车队数量 a n s + 1 ans + 1 ans+1。
为了避免除法 精度问题,我们将除法转换为乘法 : t 1 < t 2 = > ( t a r g e t − p 1 ) × s 2 < ( t a r g e t − p 2 ) × s 1 t1 < t2 => (target - p1) \times s2 < (target - p2) \times s1 t1<t2=>(target−p1)×s2<(target−p2)×s1。
时间复杂度: O ( n × l o g n ) O(n \times logn) O(n×logn)
C++代码:
using PII = pair<int,int>;
class Solution {
public:
int carFleet(int t, vector<int>& position, vector<int>& speed) {
int n = position.size();
vector<PII> a;
for(int i = 0;i < n;i++) a.emplace_back(position[i],speed[i]);
sort(a.begin(),a.end(),[&](auto &p,auto &q){
return p.first > q.first;
});
int ans = 1;
int p1 = a[0].first , s1 = a[0].second;
for(int i = 1;i < n;i++){
int p2 = a[i].first , s2 = a[i].second;
// * 1LL 是为了防止 爆 int
if((t - p1) * 1LL * s2 < (t - p2) * 1LL * s1){
ans++;
p1 = p2;
s1 = s2;
}
}
return ans;
}
};