Leetcode.96 不同的二叉搜索树

该问题求解的是在1到n的不同整数中构建互不相同的二叉搜索树的总数。通过动态规划方法,定义以i为根节点的二叉搜索树数量为f(i),并利用卡特兰数公式,计算出所有可能的二叉搜索树的数量g(n)。时间复杂度为O(n^2)。给出的C++代码实现了这一算法。
摘要由CSDN通过智能技术生成

题目链接

Leetcode.96 不同的二叉搜索树 mid

题目描述

给你一个整数 n n n ,求恰由 n n n 个节点组成且节点值从 1 1 1 n n n 互不相同的 二叉搜索树 有多少种?

返回满足题意的二叉搜索树的种数。

示例 1:

在这里插入图片描述

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示:
  • 1 < = n < = 19 1 <= n <= 19 1<=n<=19

解法:dp & 卡特兰数

我们定义 g ( n ) g(n) g(n) n n n 个节点所能表示的不同的二叉搜索树的数量,这也就是我们最终要返回的答案。

我们定义 f ( i ) f(i) f(i) 是以 节点 i i i 为根节点的二叉搜索树的数量。

那么,我们可以得出:

g ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( n − 1 ) + f ( n ) g(n) = f(1) + f(2) + f(3) + ... + f(n - 1) + f(n) g(n)=f(1)+f(2)+f(3)+...+f(n1)+f(n)

由于 f ( i ) f(i) f(i) 是以 节点 i i i 为根节点,所以它的左子树中的节点数量为 i − 1 i - 1 i1 , 它的右子树中的节点数量为 n − i n - i ni,所以:

f ( i ) = g ( i − 1 ) × g ( n − i ) f(i) = g(i - 1) \times g(n - i) f(i)=g(i1)×g(ni)

讲以上两个式子结合一下,可以得出最终的式子:

g ( n ) = g ( 0 ) × g ( n − 1 ) + g ( 1 ) × g ( n − 2 ) + . . . + g ( n − 2 ) × g ( 1 ) + g ( n − 1 ) × g ( 0 ) g(n) = g(0) \times g(n - 1) + g(1) \times g(n - 2) +...+g(n - 2) \times g(1) + g(n - 1) \times g(0) g(n)=g(0)×g(n1)+g(1)×g(n2)+...+g(n2)×g(1)+g(n1)×g(0)

这个就是卡特兰数。

什么是卡特兰数

卡特兰数能够解决的问题

时间复杂度: O ( n 2 ) O(n^2) O(n2)

C++代码:

class Solution {
public:
    int numTrees(int n) {
        int g[n + 1];
        memset(g,0,sizeof g);

        g[0] = 1 , g[1] = 1;

        for(int i = 2;i <= n;i++){
            for(int j = 0;j < i;j++){
                g[i] += g[j] * g[i - j - 1];
            }
        }
        return g[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值