题目链接
题目描述
给定整数数组 n u m s nums nums 和整数 k k k,请返回数组中第 k k k 个最大的元素。
请注意,你需要找的是数组排序后的第 k k k 个最大的元素,而不是第 k k k 个不同的元素。
你必须设计并实现时间复杂度为 O ( n ) O(n) O(n) 的算法解决此问题。
示例 1:
输入: [3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4
提示:
- 1 ≤ k ≤ n u m s . l e n g t h ≤ 1 0 5 1 \leq k \leq nums.length \leq 10^5 1≤k≤nums.length≤105
- − 1 0 4 ≤ n u m s [ i ] ≤ 1 0 4 -10^4 \leq nums[i] \leq 10^4 −104≤nums[i]≤104
解法一:排序
我可以直接对 n u m s nums nums 进行 从小到大 的排序,排序完成之后, n u m s [ n − k ] nums[n - k] nums[n−k] 就是第 k k k 大的数。
时间复杂度: O ( n × l o g n ) O(n \times logn) O(n×logn)
C++代码:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
sort(nums.begin(),nums.end());
return nums[n - k];
}
};
解法二:优先队列
我们直接使用一个 小顶堆 q q q,插入 k k k 个元素,遍历完成之后,堆里的 k k k 个元素就是最大的 k k k 个元素。由于是 小顶堆,所以堆顶的元素就是第 k k k 大的元素。
时间复杂度: O ( n × l o g n ) O(n \times logn) O(n×logn)
C++代码:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
priority_queue<int,vector<int>,greater<int>> q;
for(auto x:nums){
if(q.size() < k) q.push(x);
else if(x > q.top()){
q.push(x);
q.pop();
}
}
return q.top();
}
};
解法三:快速排序
假设使用快速排序,排序区间 [ l , r ] [l,r] [l,r]。
在递归到某一层中,已经确定了位置 i i i 的元素是 x x x ,那么我们接下来只需要继续递归 [ l , i − 1 ] [l,i - 1] [l,i−1] 和 [ i + 1 , r ] [i + 1,r] [i+1,r] 这两个区间即可。
假设我们是按照 从小到大 的顺序排序的,并且 i = n − k i = n - k i=n−k,那么其实第 k k k 大的元素已经被确定了,所以不需要再继续向下递归了,直接返回即可。
时间复杂度: O ( n ) O(n) O(n)
C++代码:
class Solution {
public:
int findKthLargest(vector<int>& a, int k) {
int n = a.size();
function<void(int,int)> quick_sort = [&](int l,int r) ->void{
if(l >= r) return;
swap(a[l] , a[l + rand() % (r - l + 1)]);
int x = a[l] , i = l , j = r;
while(i < j){
//先向左找到第一个 <= x 的元素 a[j]
while(i < j && a[j] > x) j--;
if(i < j) a[i++] = a[j];
//再向右找到第一个 >= x 的元素 a[i]
while(i < j && a[i] < x) i++;
if(i < j) a[j--] = a[i];
}
a[i] = x;
//第 k 大的元素已经确定了 , 所以不用继续向下递归了 , 直接返回
if(i == n - k) return;
quick_sort(l , i - 1);
quick_sort(i + 1 , r);
};
quick_sort(0,n - 1);
return a[n - k];
}
};