[蓝桥杯 2014 省 A] 波动数列

题目链接

[蓝桥杯 2014 省 A] 波动数列

题目描述

观察这个数列:

1   3   0   2   − 1   1   − 2   … 1\ 3\ 0\ 2\ -1\ 1\ -2\ … 1 3 0 2 1 1 2 

这个数列中后一项总是比前一项 增加 2 2 2 或者 减少 3 3 3,且每一项都为整数

栋栋对这种数列很好奇,他想知道长度为 n n n 和为 s s s 而且后一项总是比前一项增加 a a a 或者减少 b b b 的整数数列可能有多少种呢?

输入格式

共一行,包含四个整数 n , s , a , b n,s,a,b n,s,a,b,含义如前面所述。

输出格式

共一行,包含一个整数,表示满足条件的方案数。

由于这个数很大,请输出方案数除以 100000007 100000007 100000007 的余数。

数据范围
  • 1 ≤ n ≤ 1000 1≤n≤1000 1n1000

  • − 1 0 9 ≤ s ≤ 1 0 9 −10^9≤s≤10^9 109s109

  • 1 ≤ a , b ≤ 1 0 6 1≤a,b≤10^6 1a,b106

输入样例:

4 10 2 3

输出样例:

2

样例解释

两个满足条件的数列分别是 2   4   1   3 2\ 4\ 1\ 3 2 4 1 3 7   4   1   − 2 7\ 4\ 1\ -2 7 4 1 2

解法:同余 + dp

我们可以列出数列的 n n n 项,这里假设 x x x 是第一项, d 1 , d 2 , . . . , d n − 1 d_1,d_2,...,d_{n-1} d1,d2,...,dn1的值为 a a a 或者 b b b

s = ( x ) + ( x + d 1 ) + ( x + d 1 + d 2 ) + . . . + ( x + d 1 + d 2 + . . . + d n − 1 ) s = (x) + (x + d_1) + (x + d_1 + d_2) + ... + (x + d_1 + d_2 + ... + d_{n - 1}) s=(x)+(x+d1)+(x+d1+d2)+...+(x+d1+d2+...+dn1)

将其整理一下可以得到 :
s = n × x + ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) s = n \times x + (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1}) s=n×x+(n1)d1+(n2)d2+...+(dn1)

由于 x x x 可以是任意的整数,而 s s s 是给定的,也就是确定的,于是我们可以通过 s s s 得到 x x x

x = s − [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] n x =\frac{ s -[ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})]}{n} x=ns[(n1)d1+(n2)d2+...+(dn1)]

由于 x x x ,也就是数列的第一项,必须是整数。

所以, n n n 必须能够整除 s − [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] s -[ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] s[(n1)d1+(n2)d2+...+(dn1)],也就是 s − [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] s -[ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] s[(n1)d1+(n2)d2+...+(dn1)] 除以 n n n 的余数为 0 0 0

我们能够进一步推导出 s s s , [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] [ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] [(n1)d1+(n2)d2+...+(dn1)] 除以 n n n 的余数相等,也就是 s   m o d   n ≡ [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] m o d    n s\ mod\ n \equiv [ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] \mod n s mod n[(n1)d1+(n2)d2+...+(dn1)]modn,即 s s s , [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] [ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] [(n1)d1+(n2)d2+...+(dn1)] 同余 n n n

所以我们将原问题转换为:求使得 [ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( d n − 1 ) ] [ (n - 1)d_1 + (n - 2)d_2 + ... + (d_{n - 1})] [(n1)d1+(n2)d2+...+(dn1)] s s s 同余 n n n 的方案数有多少种。

我们定义 f [ i ] [ j ] f[i][j] f[i][j] 为从前 i i i 项中选,第 i i i 项元素比前一个 增加 a a a 或者 减少 b b b ,且模 n n n 余数是 j j j 的方案数。

如果第 i i i 项元素选的是 + a +a +a

[ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( n − ( i − 1 ) ) d i − 1 + ( n − 1 ) a ]   m o d   n ≡ j [(n - 1)d_1 + (n - 2)d_2 + ... + (n - (i - 1))d_{i - 1} + (n - 1)a] \ mod\ n \equiv j [(n1)d1+(n2)d2+...+(n(i1))di1+(n1)a] mod nj

将其转换一下:

[ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( n − ( i − 1 ) ) d i − 1 ]   m o d   n ≡ [ j − ( n − 1 ) a ]   m o d   n [ (n - 1)d_1 + (n - 2)d_2 + ... + (n - (i - 1))d_{i - 1}] \ mod\ n \equiv [j - (n - 1)a] \ mod\ n [(n1)d1+(n2)d2+...+(n(i1))di1] mod n[j(n1)a] mod n

所以我们可以得到 f [ i ] [ j ] = f [ i − 1 ] [ j − ( n − 1 ) a ] f[i][j] = f[i - 1][j - (n - 1)a] f[i][j]=f[i1][j(n1)a]

如果第 i i i 项元素选的是 − b -b b

[ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( n − ( i − 1 ) ) d i − 1 − ( n − 1 ) b ]   m o d   n ≡ j [(n - 1)d_1 + (n - 2)d_2 + ... + (n - (i - 1))d_{i - 1} - (n - 1)b] \ mod\ n \equiv j [(n1)d1+(n2)d2+...+(n(i1))di1(n1)b] mod nj

将其转换一下:

[ ( n − 1 ) d 1 + ( n − 2 ) d 2 + . . . + ( n − ( i − 1 ) ) d i − 1 ]   m o d   n ≡ [ j + ( n − 1 ) b ]   m o d   n [ (n - 1)d_1 + (n - 2)d_2 + ... + (n - (i - 1))d_{i - 1}] \ mod\ n \equiv [j + (n - 1)b] \ mod\ n [(n1)d1+(n2)d2+...+(n(i1))di1] mod n[j+(n1)b] mod n

所以我们可以得到 f [ i ] [ j ] = f [ i − 1 ] [ j + ( n − 1 ) b ] f[i][j] = f[i - 1][j + (n - 1)b] f[i][j]=f[i1][j+(n1)b]

综上,我们可以得出:

f [ i ] [ j ] = f [ i − 1 ] [ j + ( n − 1 ) b ] + f [ i − 1 ] [ j − ( n − 1 ) a ] f[i][j] = f[i - 1][j + (n - 1)b] + f[i - 1][j - (n - 1)a] f[i][j]=f[i1][j+(n1)b]+f[i1][j(n1)a]

注意:

  • 由于 j − ( n − 1 ) a j - (n - 1)a j(n1)a 可能小于 0 0 0,我们必须保证它模 n n n 为正数。令 t = j − ( n − 1 ) a t = j - (n - 1)a t=j(n1)a,那么我们最终得到的余数应该是 ( t   m o d   n + n )   m o d   n (t\ mod\ n + n)\ mod\ n (t mod n+n) mod n,这样就保证了最终的余数是正数。
  • f [ 0 ] [ 0 ] f[0][0] f[0][0] 应该初始化为 1 1 1,因为他表示什么也不选也是一种方案,什么也不选那么就只有第一项 x x x
  • 我们最终返回的答案就是 f [ n − 1 ] [ ( s   m o d   n + n )   m o d   n ] f[n - 1][(s\ mod\ n + n)\ mod\ n] f[n1][(s mod n+n) mod n],因为 s s s 有可能是负数,所以我们也需要保证它模 n n n 是一个正数。

时间复杂度: O ( n 2 ) O(n^2) O(n2)

C++代码:

#include <iostream>

using namespace std;

const int N = 1010 , MOD = 100000007;
int f[N][N];

int get_mod(int a , int b){
    return (a % b + b) % b;
}

int main(){
    int n , s, a, b;
    cin>>n>>s>>a>>b;
    
    f[0][0] = 1;
    for(int i = 1;i < n;i++){
        for(int j = 0;j < n;j++){
            int &val = f[i][j];
            val = (val + f[i - 1][get_mod(j - (n - i) * a , n)]) % MOD;
            val = (val + f[i - 1][get_mod(j + (n - i) * b , n)]) % MOD;
        }
    }
    
    cout<<f[n - 1][get_mod(s , n)]<<'\n';
}

Java代码:

import java.io.*;
import java.util.*;

public class Main{
    static final int N = 1010 , MOD = 100000007;
    static long[][] f = new long[N][N];
    static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
    
    public static int get_mod(int a , int b){
        return (a % b + b) % b;
    }
    
    public static void main(String[] args) throws Exception{
        String[] s1 = in.readLine().split(" ");
        int n = Integer.parseInt(s1[0]);
        int s = Integer.parseInt(s1[1]);
        int a = Integer.parseInt(s1[2]);
        int b = Integer.parseInt(s1[3]);
        
        f[0][0] = 1;
        for(int i = 1;i < n;i++){
            for(int j = 0;j < n;j++){
                f[i][j] = (f[i][j] + f[i - 1][get_mod(j - (n - i) * a , n)]) % MOD;
                f[i][j] = (f[i][j] + f[i - 1][get_mod(j + (n - i) * b , n)]) % MOD;
            }
        }
        
        System.out.println(f[n - 1][get_mod(s,n)]);
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值