494.目标和

思路:

由题意可知正号的数之和减去负号的数之和就是目标值
1.定义俩个变量,并且确定dp数组及其下标含义:
dp[i][j]表示填满容量为nums的“背包”可以有dp[i][j]种方法
2.确定递推公式:
由题意可知多个数相加起来的和,且存在正数和负数,则由题意可推导出公式为:
dp[i][j]+=dp[i-1][j-nums[i-1]]
3.初始化设置的数组和条件:
开始递推时,初始化所有条件都为零,并且当定义的数组大于当前相加数所有的总和时,必有False,此时返回为零即可。
dp[0][0]=1即可。
将所有的数组元素,初始化为零,用来存储当前运算的值。
4.确定遍历范围:
基于经典的背包问题,必须从头开始遍历,动态规划序遍历两个数组,都是从头,遍历n个元素即可。
5.返回当前值
class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total_sum = sum(nums)  # 计算输入数组的总和
        m = len(nums)  # 获取输入数组的长度
        if abs(target) > total_sum:  # 如果目标值的绝对值大于数组的总和
            return 0  # 返回0,因为无法达到目标值
        if (target + total_sum) % 2 == 1:  # 如果目标值和数组总和的和为奇数
            return 0  # 返回0,因为无法达到目标值
        target_sum = (target + total_sum) // 2  # 计算子集的目标和
        dp = [[0] * (target_sum + 1) for _ in range(m + 1)]  # 创建二维数组以存储达到目标值的子集数量

        # 初始化
        dp[0][0] = 1  # 将空子集的数量初始化为1
        for i in range(m + 1):  # 遍历数组中的元素
            for j in range(target_sum + 1):  # 遍历可能的目标和
                dp[i][j] = dp[i - 1][j]  # 将子集数量设置为前一个元素的子集数量
                if j >= nums[i - 1]:  # 如果当前目标和大于或等于当前元素
                    dp[i][j] += dp[i - 1][j - nums[i - 1]]  # 将前一个元素的子集数量加到减少的目标和上

        return dp[m][target_sum]  # 返回达到目标和的子集数量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值