思路:
由题意可知正号的数之和减去负号的数之和就是目标值
1.定义俩个变量,并且确定dp数组及其下标含义:
dp[i][j]表示填满容量为nums的“背包”可以有dp[i][j]种方法
2.确定递推公式:
由题意可知多个数相加起来的和,且存在正数和负数,则由题意可推导出公式为:
dp[i][j]+=dp[i-1][j-nums[i-1]]
3.初始化设置的数组和条件:
开始递推时,初始化所有条件都为零,并且当定义的数组大于当前相加数所有的总和时,必有False,此时返回为零即可。
dp[0][0]=1即可。
将所有的数组元素,初始化为零,用来存储当前运算的值。
4.确定遍历范围:
基于经典的背包问题,必须从头开始遍历,动态规划序遍历两个数组,都是从头,遍历n个元素即可。
5.返回当前值
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums) # 计算输入数组的总和
m = len(nums) # 获取输入数组的长度
if abs(target) > total_sum: # 如果目标值的绝对值大于数组的总和
return 0 # 返回0,因为无法达到目标值
if (target + total_sum) % 2 == 1: # 如果目标值和数组总和的和为奇数
return 0 # 返回0,因为无法达到目标值
target_sum = (target + total_sum) // 2 # 计算子集的目标和
dp = [[0] * (target_sum + 1) for _ in range(m + 1)] # 创建二维数组以存储达到目标值的子集数量
# 初始化
dp[0][0] = 1 # 将空子集的数量初始化为1
for i in range(m + 1): # 遍历数组中的元素
for j in range(target_sum + 1): # 遍历可能的目标和
dp[i][j] = dp[i - 1][j] # 将子集数量设置为前一个元素的子集数量
if j >= nums[i - 1]: # 如果当前目标和大于或等于当前元素
dp[i][j] += dp[i - 1][j - nums[i - 1]] # 将前一个元素的子集数量加到减少的目标和上
return dp[m][target_sum] # 返回达到目标和的子集数量