#神奇的幻方
## 题目描述
幻方是一种很神奇的 N*N 矩阵:它由数字 1,2,3,……,N*N 构成,且每行、每列及两条对角线上的数字之和都相同。
当 N 为奇数时,我们可以通过下方法构建一个幻方:
首先将 1 写在第一行的中间。
之后,按如下方式从小到大依次填写每个数 K (K=2,3,……,N*N) :
1. 若 (K-1) 在第一行但不在最后一列,则将 K 填在最后一行, (K-1) 所在列的右一列;
2. 若 (K-1) 在最后一列但不在第一行,则将 K 填在第一列, (K-1) 所在行的上一行;
3. 若 (K-1) 在第一行最后一列,则将 K 填在 (K-1)- 的正下方;
4. 若 (K-1) 既不在第一行,也不在最后一列,如果 (K-1) 的右上方还未填数,则将 K 填在 (K-1) 的右上方,否则将 K 填在 (K-1) 的正下方。
现给定 N ,请按上述方法构造 N*N 的幻方。
## 输入格式
一个正整数 N,即幻方的大小。
## 输出格式
共 N 行,每行 N 个整数,即按上述方法构造出的 N*N 的幻方,相邻两个整数之间用单空格隔开。
### 样例输入 #1
3
### 样例输出 #1
8 1 6
3 5 7
4 9 2
## 提示
对于 100% 的数据,对于全部数据,1<=N<=39 且 N 为奇数。
#include <bits/stdc++.h> //记录一下,按题意走
using namespace std;
int a[40][40];
int main()
{
int n;
cin>>n;
a[1][(n+1)/2]=1;
int x=1;
int y=(n+1)/2;
int i=2;
while (i<=n*n)
{
if (x==1&&y!=n)
{
a[n][y+1]=i;
x=n,y=y+1;
i++;
}
if (x!=1&&y==n)
{
a[x-1][1]=i;
x=x-1,y=1;
i++;
}
if (x==1&&y==n)
{
a[x+1][y]=i;
x=x+1,y=y;
i++;
}
if (x!=1&&y!=n)
{
if (a[x-1][y+1]==0)
{
a[x-1][y+1]=i;
x=x-1,y=y+1;
i++;
}
else
{
a[x+1][y]=i;
x=x+1,y=y;
i++;
}
}
}
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}
return 0;
}
/*其实这题完全没必要很多的if语句,把幻方扩展开来,
题目的意思就是从第一行中点开始,把每一个下面的数
放到“右上角”,若右上角有数,则放到正下方。*/
#include <bits/stdc++.h>
using namespace std;
int a[40][40];
int main()
{
int n;
cin>>n;
int x=1;
int y=(n+1)/2;
for (int i=1;i<=n*n;i++)
{
a[x][y]=i;
if (a[(x-2+n)%n+1][y%n+1]==0) x=(x-2+n)%n+1,y=y%n+1;
else x=x%n+1;
}
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}
return 0;
}