你有 n 根棍子,编号从 1 到 n。第 i 根棍子的长度是2^ai。
你想从给定的n根棍子中恰好选择 3 根棍子,并用它们作为三角形的边,形成一个非退化三角形。如果三角形的面积严格大于 0,则称为非退化三角形。
你必须计算出选择 3 根棍子的方法的数量,这样就可以用它们形成一个三角形。请注意,选择棒的顺序并不重要(例如,选择第 1 根、第 2 根和第 4 根棒与选择第 2 根、第 4 根和第 1 根棒相同)。
输入
第一行包含一个整数t(1 ≤ t ≤ 1e4)——测试用例的数量。
每个测试用例由两行组成:第一行包含一个整数n(1 ≤ n ≤ 3e5);第二行包含n个整数a1,a2,…,an(0 ≤ ai ≤ n)。
对输入的附加约束:所有测试用例的n之和不超过 3e5。
输出
对于每个测试用例,打印一个整数——精确选择3个棒的方法的数量,以便由它们形成三角形。
Input
4
7
1 1 1 1 1 1 1
4
3 2 1 3
3
1 2 3
1
1
Output
35
2
0
0
注意:
在示例的第一个测试案例中,可以选择给定 7 个中的任意三个。
在示例的第二个测试用例中,您可以选择第 1、第 2 和第 4 个棒,或者第 1、3 和 4 个棒。
在示例的第三个测试用例中,您不能用给定的长度为 2、4 和 8 的棒形成三角形。
解析:
因为棍子的长度都是 2^ai,所以有 2 倍的关系;
假设 a<b<c,这样是围不成三角形,将 a,b,c转化后,a+b<c,不满足组成三角形三条边的条件;
假设 a=b<c,这样还是围不成三角形,转化后,在极限的情况下,a+b=c,也不满足组成三角形三条边的条件;
记录每个棍子长度出现的次数,从小到大排序;
当 cnt>=3时,从 cnt 中选 3 个;
当 cnt>=2时,从 cnt 中选 2 个,再从比这根棍子小的中选择 1 个。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=2e6+10;
int n;
map <int,int> s;
int C(int n,int m)
{
if (m==2) return n*(n-1)/2;
return n*(n-1)*(n-2)/6;
}
void solve()
{
cin>>n;
s.clear();
for (int i=0;i<n;i++)
{
int x;
cin>>x;
s[x]++;
}
int ans=0,sum=0;
for (auto [x,y]:s)
{
if (y>=3) ans +=C(y,3);
if (y>=2) ans +=C(y,2)*sum;
sum +=y;
}
cout<<ans<<endl;
}
signed main()
{
ios;
int T=1;
cin>>T;
while (T--) solve();
return 0;
}