B. Forming Triangles

这篇文章描述了一个编程问题,如何计算从n根长度为2^ai的棍子中选择3根组成非退化三角形的方法数量。通过统计棍子长度出现的次数并应用组合数学公式来解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你有 n 根棍子,编号从 1 到 n。第 i 根棍子的长度是2^ai。
你想从给定的n根棍子中恰好选择 3 根棍子,并用它们作为三角形的边,形成一个非退化三角形。如果三角形的面积严格大于 0,则称为非退化三角形。
你必须计算出选择 3 根棍子的方法的数量,这样就可以用它们形成一个三角形。请注意,选择棒的顺序并不重要(例如,选择第 1 根、第 2 根和第 4 根棒与选择第 2 根、第 4 根和第 1 根棒相同)。
 
输入
第一行包含一个整数t(1 ≤ t ≤ 1e4)——测试用例的数量。
每个测试用例由两行组成:第一行包含一个整数n(1 ≤ n ≤ 3e5);第二行包含n个整数a1,a2,…,an(0 ≤ ai ≤ n)。
对输入的附加约束:所有测试用例的n之和不超过 3e5。

输出
对于每个测试用例,打印一个整数——精确选择3个棒的方法的数量,以便由它们形成三角形。

Input
4
7
1 1 1 1 1 1 1
4
3 2 1 3
3
1 2 3
1
1

Output
35
2
0
0

注意:
在示例的第一个测试案例中,可以选择给定 7 个中的任意三个。
在示例的第二个测试用例中,您可以选择第 1、第 2 和第 4 个棒,或者第 1、3 和 4 个棒。
在示例的第三个测试用例中,您不能用给定的长度为 2、4 和 8 的棒形成三角形。

解析:
因为棍子的长度都是 2^ai,所以有 2 倍的关系;
假设 a<b<c,这样是围不成三角形,将 a,b,c转化后,a+b<c,不满足组成三角形三条边的条件;
假设 a=b<c,这样还是围不成三角形,转化后,在极限的情况下,a+b=c,也不满足组成三角形三条边的条件;
记录每个棍子长度出现的次数,从小到大排序;
当 cnt>=3时,从 cnt 中选 3 个;
当 cnt>=2时,从 cnt 中选 2 个,再从比这根棍子小的中选择 1 个。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr);
int gcd(int a,int b) { return b? gcd(b,a%b) : a; }
typedef pair<int,int> PII;
const double PI=acos(-1.0);
const int N=2e6+10;
int n;
map <int,int> s;
int C(int n,int m)
{
    if (m==2) return n*(n-1)/2;
    return n*(n-1)*(n-2)/6;
}
void solve()
{
    cin>>n;
    s.clear();
    for (int i=0;i<n;i++)
    {
        int x;
        cin>>x;
        s[x]++;
    }
    int ans=0,sum=0;
    for (auto [x,y]:s)
    {
        if (y>=3) ans +=C(y,3);
        if (y>=2) ans +=C(y,2)*sum;
        sum +=y;
    }
    cout<<ans<<endl;
}
signed main()
{
    ios;
    int T=1;
    cin>>T;
    while (T--) solve(); 
    return 0;
}

### 回答1: beamforming.py是一个用于实现波束形成技术的Python模块。波束形成是一种通过构造合适的权重向量来提升接收信号的强度和质量的技术。该技术常用于无线通信领域,尤其是在无线电信号处理中。 beamforming.py模块提供了一系列函数和类来实现不同的波束形成算法。其中包括传统的波束形成技术,如延迟和和权重以及最大信噪比波束形成。此外,该模块还提供了自适应波束形成技术,如最小均方误差波束形成和最小方差无失真响应波束形成。 使用beamforming.py模块,用户可以方便地实现波束形成算法,并将其应用于自己的无线通信系统中。用户可以根据自己的需求选择不同的波束形成算法,并通过调整参数和优化权重向量来达到更好的性能。 总之,beamforming.py模块为用户提供了一个方便且可定制的波束形成工具。通过使用该模块,用户可以有效地处理接收信号,并提升无线通信系统的性能。 ### 回答2: beamforming.py是一个用于波束成形处理的Python脚本文件。波束成形是一种信号处理技术,旨在通过合理设计和配置阵列天线来增强所接收或发射的信号的方向性。 该脚本主要实现以下功能: 1. 阵列天线设置:波束成形的核心是一个由多个天线组成的阵列。脚本可以根据具体应用需求,设定阵列的类型、形状、元素间距、天线个数等参数。 2. 信号和噪声处理:波束成形旨在提升感兴趣信号的强度,同时抑制背景噪声。通过该脚本,可以调整信号处理算法,实现噪声抑制和信号增强。 3. 波束形成:利用阵列天线接收到的信号,根据预先设定的波束形成算法,计算得到最佳的权重系数。这些权重系数将被应用于各个阵列天线上的信号,从而增强感兴趣信号的接收效果。 4. 空间谱估计:波束成形还可以估计信号的空间谱特性。脚本可以通过所接收到的信号数据,计算谱估计参数,如方向图、功率谱密度等,为后续的信号处理和分析提供基础数据。 5. 可视化和结果输出:该脚本还支持波束成形结果的可视化展示和输出。用户可以通过图形界面或数据输出的方式,观察波束成形的效果和相关信号处理指标。 总结来说,beamforming.py是一个实现波束成形信号处理的Python脚本文件,具有阵列天线设置、信号和噪声处理、波束形成、空间谱估计、可视化和结果输出等功能。通过这些功能,用户能够实现波束成形的各个步骤,并对感兴趣信号进行增强和定向接收处理。 ### 回答3: beamforming.py是一个用Python编写的程序,用于实现波束成形技术的算法。 波束成形是一种信号处理技术,用于在接收到的信号中,通过调整不同阵元(接收天线)的相位和幅度,使得信号在特定方向上增强,同时在其他方向上减弱。这种技术可以提高信号的接收质量和抗干扰能力,特别适用于无线通信、雷达、声纳等领域。 beamforming.py实现了波束成形算法的核心逻辑,包括信号接收、信号处理和波束形成三个部分。 在信号接收阶段,beamforming.py通过不同的天线接收到来自不同方向的信号,并将原始信号进行采样和量化,得到离散的数字信号。 在信号处理阶段,beamforming.py对离散的数字信号进行时频域转换,得到信号在时域和频域上的表示。然后,通过计算不同阵元接收到的信号的相位和幅度,进行信号合成。 最后,在波束形成阶段,beamforming.py将合成的信号通过调整阵元之间的相位差和幅度权重,使得信号在目标方向上增强,其他方向上减弱。这样就实现了波束成形。 此外,beamforming.py还可以根据需求设置不同的波束成形算法和参数,以适应不同的应用场景和信号特点。 总之,beamforming.py是一个实现了波束成形技术算法的Python程序,可以用于信号接收、处理和波束形成,提高信号质量和抗干扰能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值