K - 嘉然小姐的罗德岛干员生活——最短路

文章讲述了虚拟主播嘉然在明日方舟游戏世界中,通过Dijkstra算法计算从基地到远方城市最快路径中最高信息价值的故事,涉及节点间传讯通道的使用和能量级计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘉然是一位普通的虚拟主播,她对明日方舟这款游戏情有独钟。有一天,在玩游戏的时候,她忽然发现自己穿越到了明日方舟的世界中。
嘉然醒来时,发现自己置身于罗德岛基地,周围是熟悉的面孔和干员们忙碌的身影,作为一个活泼可爱热爱冒险的女孩,嘉然决定成为一名普通干员,帮助罗德岛解决一系列的问题。
有一天,她接到了一份紧急任务,需要尽快传递一份重要情报到远方的城市。
基地的情报传递系统点和由 n 个节 m 条双向传讯通道组成,信息经过每条传讯通道的所需的时间为 1,每条传讯通道分别有各自的能量级 em ,除此之外,基地是 1 号节点,目的地是 n 号节点,题目保证信息能传递到目的地且没有重边。
嘉然的任务是分析出从基地出发到达目的地最快的传讯路径下最高的信息价值。
就当嘉然为什么是信息价值一筹莫展时,罗德岛的领袖阿米娅给了她一份说明书:信息价值 = 路径中传讯通道的最大能量级 - 路径中传讯通道最小能量级。

输入
第一行输入两个整数 n, m ,代表 n 个节点 m 条双向传讯通道。(2 ≤ n ≤ 1e5,1 ≤ m ≤  2e5)
接下来 m 行,每行输入三个整数 x,y,em ,代表 x 和 y 之间有一条双向传讯通道,通道的能量级是 em (1 ≤ x,y ≤ n,1 ≤ em ≤1e5)

输出
输出一个整数,表示 1 到 n 最快的传讯路径下最高的信息价值。

Input
7 9
1 2 4
1 3 3
2 4 2
2 6 9
3 4 1
3 5 6
5 7 8
4 7 7
6 7 8

Output
6

解析:
从 1 到 n 跑一遍最短路,记录最短路上每一点的从 1 到该点的最大值和最小值;
从 n 到 1 跑一遍最短路,记录最短路上每一点的从 n 到该点的最大值和最小值;
判断最短路上每一点的最大信息价值;
这些点中取个max就可以了。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
typedef pair<int, int> PII;
const double PI = acos(-1.0);
const int N=2e5+10;
struct node
{
    int v,w;
};
vector <node> g[N];
bool vis[N];
int d[2][N],s[2][N],p[2][N];
int n,m;
priority_queue <PII,vector<PII>,greater<PII>> q;
void djkstra(int op,int dis[],int s[],int p[])
{
    for (int i=1;i<=n;i++) dis[i]=0x3f3f3f3f,p[i]=0x3f3f3f3f,vis[i]=0;

    dis[op]=0;
    q.push({0,op});

    while (q.size())
    {
        int tance=q.top().first;
        int u=q.top().second;
        q.pop();
        if (vis[u]) continue;
        vis[u]=1;

        for (auto [v,w]:g[u])
        {
            if (dis[v]>tance+1)
            {
                dis[v]=tance+1;
                q.push({dis[v],v});
                s[v]=max(s[u],w);
                p[v]=min(p[u],w);
            }
            else if (dis[v]==tance+1)
            {
                s[v]=max({s[v],s[u],w});
                p[v]=min({p[v],p[u],w});
            }
        }
    }
}
void solve()
{
    cin>>n>>m;
    for (int i=0;i<m;i++)
    {
        int u,v,w;
        cin>>u>>v>>w;
        g[u].push_back({v,w});
        g[v].push_back({u,w});
    }

    djkstra(1,d[0],s[0],p[0]);
    djkstra(n,d[1],s[1],p[1]);

    int ans=0;

    for (int i=2;i<n;i++)
    {
        if (d[0][i]+d[1][i]==d[0][n])
        {
            ans=max({ans,abs(s[0][i]-p[1][i]),abs(s[0][i]-s[1][i])});
            ans=max({ans,abs(s[1][i]-p[0][i]),abs(p[1][i]-p[0][i])});
        }
    }

    cout<<ans;
}
signed main()
{
    ios;
    int T = 1;
    //cin>>T;
    while (T--) solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值