自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Transformer模型理解

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是。其中h表示h个自注意力机制,假设h为8,将信息输入到h层后,输出8个结果Z1,Z2,……用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都为 1,得到 Softmax 矩阵之后和。

2025-06-09 11:27:41 531

原创 uniad运动预测、占据网格预测、planning模块理解

即对transformer每一层进行分层处理:1、构建静态意图 2、构建动态意图(融合三层动态特征,包括智能体级、场景级、偏移级)3、融合静态、动态意图 4、多源交互,构建车车交互、车与地图的交互、车与bev特征的交互 5、融合交互特征信息,并预测轨迹偏移位移,然后通过累加得到预测轨迹的绝对坐标 6、更新参考轨迹、提取最终位置特征、更新层级特征(循环迭代优化预测结果)2、轨迹回归,即计算预测的偏移量(残差)并转换为绝对坐标,把每层的结果都堆叠起来,从而得到多模态的预测轨迹,选择分值最高的轨迹作为最终输出。

2025-06-02 21:16:27 639

原创 CMakeLists.txt的通用写法

以上可作为cmake和ROS中的CMakeLists.txt的通用写法,都可通过编译,不用因为编译工具的不同而改变写法,学杂了。

2025-04-03 17:11:09 147

原创 自动驾驶端到端个人理解

定义:完全端到端模型直接从传感器的原始数据(例如摄像头图像、激光雷达点云)作为输入,经过一个统一的深度学习网络,直接输出控制命令(如方向盘角度、加速度和刹车信号),实现从感知到控制的全流程学习。简单来讲就是,输入为传感器数据,输出为控制指令。图1 基于规则的模块化处理方法图2 完全端到端处理方法特点:简化了流程,不再像基于规则的模块化处理方式,从传感器到规控一步到位;但是缺乏可解释性,需要学习大量的驾驶数据(如人类驾驶记录)直接拟合目标任务,适合特定场景,而现在的大模型则适合任意复杂场景。

2025-01-22 20:16:43 244

原创 GDB的Debug过程

4.程序执行成功无误会看到[Inferior1(process71050)exitednormally]1.编译为可调试、可执行文件:g++-g-omianmain.cppdemo.cpp。2.gdb运行:gdb-qmain(调试的同时看到代码跳转:cgdbmain)单步调试:step,进入函数func后,finish指令直接输出函数运行后的结果。过程调试:next(直接跳转到函数执行完的下一步)打断点:bmian.cpp:12。

2025-01-04 14:55:58 127

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除