- 博客(4)
- 收藏
- 关注
原创 轻松使用 Docker 部署 GPU 加速的 PyTorch Jupyter Notebook,并同步代码到 GitHub
在当今快速发展的深度学习领域,构建一个高效、稳定且易于管理的开发环境至关重要。本文将为您详细介绍如何使用 Docker 部署一个支持 GPU 加速的 PyTorch Jupyter Notebook 环境,助您轻松搭建高性能的深度学习开发平台。通过容器化技术,您可以确保开发环境的一致性和可移植性,避免因环境配置问题导致的开发障碍。同时,借助 GPU 的强大计算能力,您可以显著提升模型训练和推理的效率。
2024-12-05 16:58:18
1329
原创 利用Docker Image构建TVM GPU 0.18.0版本教程
本篇教程内容较多,但是详细描述了作者的构建路径,确保可以正确地构建TVM最新版本。因为docker wsl 在默认情况下只使用Windows Memory的50%,不满足作者需求所以对.wslconfig文件进行更改在下新建文本文件加入以下内容改名为.wslconfig最终效果如下。
2024-09-18 11:24:20
1542
原创 Windows11本地安装TVM GPU版本教程
本地安装TVM的话主要是要把对应支持版本的CUDA、LLVM等安装对经过作者使用,发现可能TVM的RPC在Windows上有Bug,AutoTVM可以勉强正常使用,而ansor和meta_schedule无法正常使用,有人在GitHub上提交了Bug,但是目前还没有解决。
2024-09-11 11:24:49
1468
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人