- 博客(47)
- 收藏
- 关注
原创 图像分割完全指南:从任务本质到网络实现全解析
图像分割的核心是 “像素级分类”—— 通过算法预测每个像素的语义类别(如人、车、天空),输出与原图尺寸一致的 “分割掩膜(Mask)”,精准勾勒目标轮廓,实现 “哪里是什么” 的细粒度场景理解。任务分层:从语义分割(区域归类)到实例分割(个体识别),再到全景分割(全场景理解),逐步贴近真实场景需求;数据支撑:VOC、Cityscapes、COCO 等数据集提供标准化标注,为模型训练与评估奠定基础;指标核心:mIoU 作为黄金指标,全面衡量分割精度,指导模型优化;技术核心。
2025-11-27 10:17:47
329
原创 U-Net 系列算法解析:从经典分割到多尺度特征融合升级
U-Net 系列的迭代逻辑清晰:从 U-Net 的 “基础特征复用”,到 U-Net++ 的 “密集融合 + 深度监督”,再到 U-Net+++ 的 “多尺度全面整合”,始终围绕 “提升特征利用效率” 核心,逐步解决 “细节丢失、梯度消失、多尺度适配” 等问题。若你是分割入门或需快速部署,优先选择 U-Net;若需高精度且需灵活调整模型复杂度,U-Net++ 是最佳选择;若聚焦科研或超精细分割,可尝试 U-Net+++。
2025-11-27 10:13:16
310
原创 YOLOv5 核心架构解析:从模块创新到工程化优化
YOLOv5 的成功并非单一技术创新,而是通过 “模块优化 + 工程化打磨” 实现的综合提升:Focus 模块解决了下采样的信息丢失问题,Bottleneck CSP 强化了特征提取与训练稳定性,PAN 网络优化了多尺度特征融合,再配合便捷的可视化工具链,使其成为目标检测领域的 “开箱即用” 型标杆模型。无论是学术研究还是工业落地,YOLOv5 的模块化设计与工程化思路都值得借鉴,尤其适合需要快速部署、兼顾速度与精度的实时检测场景。
2025-11-27 10:11:10
553
原创 YOLOv4 核心笔记:兼顾速度与精度的全方位优化
BOF 模块仅增加训练阶段的计算成本,不影响推理速度,核心围绕 “数据增强”“网络正则化”“损失函数优化” 三大方向展开。
2025-10-20 14:05:50
674
原创 YOLOv3 核心笔记:多尺度特征融合与全面性能升级
YOLOv3 在 YOLOv1、v2 基础上,以 “强化小目标检测、提升多类别适配性” 为核心目标,通过多尺度特征融合、残差网络架构、丰富先验框等改进,实现精度与速度的进一步平衡,成为单阶段目标检测的经典模型之一。
2025-10-17 16:08:07
405
原创 YOLOv1 与 YOLOv2 核心笔记:从单阶段检测开创到性能升级
YOLO 系列是单阶段目标检测的里程碑,YOLOv1 开创 “端到端回归” 新思路,YOLOv2 则通过多维度优化实现 “更快、更强” 的检测效果。这份笔记系统梳理两代模型的核心设计、网络架构、缺陷与改进,清晰呈现技术迭代逻辑。
2025-10-16 16:15:34
290
原创 目标检测项目核心笔记:从任务定义到算法流程
核心目标:同时完成 “分类”(识别物体类别,如人、车、狗)和 “回归”(定位物体位置,用边界框表示)两大任务,输出 “类别 + 边界框坐标”。四大核心挑战多任务协同:分类任务关注全局特征,回归任务关注局部位置,需平衡两者损失;目标数量与种类繁多:图像中可能包含 0~N 个物体,且类别差异大(如小到猫、大到汽车);目标尺度不均:同一类物体可能因距离镜头远近呈现不同尺寸(如远处的人 vs 近处的人);外部环境干扰:遮挡(如物体被部分遮挡)、噪声(如模糊、光照变化)会降低检测精度。
2025-10-15 14:14:32
534
原创 CIFAR-10 图像分类完整项目代码解析:从数据加载到模型训练与预测
这份代码实现了一个基于 PyTorch 的 CIFAR-10 数据集图像分类项目,涵盖全流程。以下从核心模块、代码逻辑、关键细节到结果解读,进行逐部分详细解析。
2025-09-27 15:00:16
755
原创 图像分类项目核心笔记:从任务层级到解决方案
图像分类是计算机视觉的基础任务,核心目标是将图像映射到预设类别标签并最小化分类误差。这份笔记将系统梳理图像分类的任务层级、评估指标、模型关键概念,以及样本量不足的解决方案,为实战项目提供完整理论框架。
2025-09-25 13:41:31
876
原创 PyTorch 数据处理工具箱笔记总结:从数据加载到可视化
Dataset是抽象类,需继承后实现__init__(初始化数据 / 标签)、(单样本读取)、__len__(样本总数)三个方法,核心是按索引返回单个样本(特征 + 标签)。# 初始化特征(5个2维向量)和标签(5个类别)# 按索引读取单个样本,转换为Tensor(适配PyTorch)txt = torch.from_numpy(self.Data[index]) # 特征:(2,)label = torch.tensor(self.Label[index]) # 标签:标量# 返回样本总数。
2025-09-25 09:14:49
939
原创 构建神经网络的两大核心工具
PyTorch 中构建网络主要依赖和,二者功能互补但适用场景不同,需根据需求选择:需先实例化层并传入参数,再以函数形式调用处理数据,示例:2. nn.functional:无参数的纯函数工具核心特性 纯函数设计:更接近数学函数,无参数管理功能,若需参数需手动定义和传递; 无模式切换:dropout 等操作需手动控制训练 / 评估状态(如); 适用场景:无学习参数的操作,如激活函数()、池化层()、纯计算型操作()。使用方式直接调用函数并传入输入数据,若涉及参数需手动传递,示例:
2025-09-23 18:50:22
719
原创 VGG和PyTorch 神经网络工具箱
组件间工作流程:输入数据经 “层” 处理得到预测值,损失函数计算预测值与真实值的误差,优化器根据误差梯度调整层的权重参数,形成闭环训练流程。依据损失函数计算的梯度,采用特定算法(如 SGD、Adam)更新模型参数,使损失最小化。神经网络的基本结构单元,负责将输入张量通过数据变换(如线性变换、卷积)转换为输出张量。参数学习的目标函数,量化模型预测值与真实值的差距,通过最小化损失实现参数优化。神经网络的构建与运行依赖四大核心组件,各组件功能明确且协同工作:。支持train()/eval()自动切换。
2025-09-22 16:04:42
650
原创 卷积神经网络(CNN)全解析:从原理到经典架构,读懂图像识别的核心
在深度学习领域,卷积神经网络(CNN)是图像识别、计算机视觉的 “核心引擎”—— 它凭借对图像空间结构的精准捕捉,彻底改变了传统机器学习处理图像的方式。从手写数字识别到自动驾驶视觉感知,CNN 的应用无处不在。今天我们从 “为什么需要 CNN” 讲起,拆解卷积层、池化层的核心逻辑,再带你梳理 LeNet、AlexNet、VGG 等经典架构的演进,帮你掌握 CNN 的本质与实战思路。
2025-09-19 15:37:26
892
原创 多层感知机(MLP)入门:从感知机到深度神经网络的关键一步
在深度学习的发展历程中,多层感知机(MLP)是从 “简单线性模型” 迈向 “复杂非线性模型” 的里程碑 —— 它通过引入 “隐藏层” 和 “激活函数”,解决了感知机无法处理的线性不可分问题,成为现代神经网络(如 CNN、Transformer)的基础架构。今天我们从经典感知机讲起,拆解多层感知机的核心逻辑、激活函数、训练方法,帮你理解 “深度” 如何赋予模型更强的表示能力。
2025-09-18 15:49:54
1153
原创 深度学习基础:线性回归与 Softmax 回归全解析,从回归到分类的桥梁
线性回归是深度学习的 “基础积木”,理解其参数优化逻辑(梯度下降、损失函数),就能迁移到复杂模型;适用场景:房价预测、销量估算、气温预测等连续值预测任务。Softmax 回归是 “回归到分类” 的关键桥梁,通过 Softmax 运算解决了分类任务的概率输出问题;适用场景:手写数字识别、图像分类(如 ImageNet 1000 类)、文本分类(如恶语评论分类)等多类分类任务。共性与延伸两者都是 “单层神经网络”,复杂模型(如 CNN、ResNet)的输出层常采用 Softmax 回归做分类;
2025-09-17 14:54:58
1032
1
原创 深度学习入门:从概念到实践,看懂 AI 时代的核心技术
在这个 AI 渗透生活方方面面的时代,深度学习早已不是晦涩的技术术语 —— 它藏在人脸识别考勤、短视频推荐、语音助手背后,甚至正在改变医疗、交通等行业的运作方式。今天我们从行业背景、核心概念、技术分类到实战工具,带你系统入门深度学习,搞懂它的本质与应用。
2025-09-17 14:48:44
607
原创 朴素贝叶斯算法全解析:从贝叶斯公式到三大模型实战
核心逻辑:基于贝叶斯定理和特征独立假设,通过 “先验概率 + 似然概率” 计算后验概率,实现分类;模型选择离散计数特征→多项式朴素贝叶斯;连续特征→高斯朴素贝叶斯;二值化特征→伯努利朴素贝叶斯;实战技巧特征非负:多项式和伯努利模型要求特征非负,需提前处理(如归一化);平滑系数:\(\alpha\)建议设为 1.0(默认),避免概率为 0;先验概率:若有领域知识,可通过自定义先验概率,提升模型效果。
2025-08-25 19:19:03
994
原创 线性回归入门:从原理到实战的完整指南
核心逻辑:通过最小二乘法找到最优线性模型,最小化预测值与真实值的均方误差;关键指标:R² 是最直观的评估指标,越接近 1 说明模型拟合效果越好;实战技巧数据预处理:先处理异常值、缺失值,若特征量级差异大(如 “面积㎡” 和 “年收入万”),需标准化;特征工程:对非线性数据,可添加多项式特征(如 \(x^2\)、\(x_1x_2\)),将其转化为线性问题;避免多重共线性:用相关性分析删除高度相关的特征。
2025-08-25 19:13:41
871
原创 机器学习聚类与集成算法全解析:从 K-Means 到随机森林的实战指南
算法类型核心思想代表算法适用场景优点缺点K-Means 聚类按距离分组,最小化簇内误差K-Means无标签数据分组高效、简单、直观K 值难定、仅适用于球形簇Bagging 集成并行采样,投票平均随机森林分类 / 回归,抗过拟合并行高效、抗过拟合、可解释性强对异常值敏感Boosting 集成串行加权,纠正错误AdaBoost分类 / 回归,高精度需求精度高、无需复杂调参串行慢、易过拟合Stacking 集成多层融合,结合多模型优点多层模型组合。
2025-08-21 18:08:58
1230
原创 机器学习数据预处理全攻略:从缺失值到特征编码,一步搞定数据清洗
数据加载与探索:用 Pandas 读取数据,info()查看缺失值;缺失值处理:少量缺失→删除,大量缺失→填充(均值 / 中位数 / 众数);特征编码:有序变量→序号编码,名义变量→独热编码,目标变量→标签编码;数据标准化:树模型除外,其他模型→Z-Score/Min-Max 标准化;特征简化(可选):连续特征→二值化 / 离散化(
2025-08-21 18:04:58
1279
原创 决策树进阶:3 大经典算法、剪枝策略与代码实战
算法选择:工业界优先用 CART(支持分类 / 回归,适合集成),简单场景可用 ID3/C4.5;过拟合解决:预剪枝(高效)和后剪枝(效果好)结合,核心调参max_depth(深度)、(叶子样本数);特征处理离散特征:CART 会自动二分划分,无需手动编码;连续特征:CART 通过贪心算法找最优分界点,无需离散化;缺失值:用中位数(连续)或众数(离散)填充,或用 C4.5 的加权方式;适用场景:需要解释性的任务(如风控、医疗)、中小规模数据集、作为集成学习基础(随机森林、XGBoost)。
2025-08-19 17:47:37
920
原创 决策树入门:从原理到实战,看懂 “树状决策” 的逻辑
在机器学习算法中,决策树绝对是最 “直观” 的存在 —— 它就像我们日常生活中的 “选择流程图”,从根节点开始,一步步根据特征做判断,最终走到叶子节点得到决策结果。今天我们就从 “树的结构” 讲起,拆解决策树的核心原理、特征选择方法,再用实例带你理解如何构造一棵决策树。
2025-08-18 15:41:56
867
原创 【无标题】
鸢尾花数据集包含 150 个样本,每个样本有 4 个特征(花萼长、花萼宽、花瓣长、花瓣宽),分为 3 个类别(山鸢尾、变色鸢尾、维吉尼亚鸢尾)。靠 K 个最近邻居的类别投票决定未知样本的类别;关键参数:K 值(需调优,常用 1~20)、距离度量(欧式距离最常用);实战技巧:数据需划分训练 / 测试集,特征差异大时需标准化;适用场景:小数据集、低维度的分类任务。
2025-08-18 11:33:07
984
原创 数据科学与爬虫技术学习笔记
NumPy 是 Python 科学计算的核心库,专为数组和矩阵操作设计,能大幅简化循环操作,提供丰富的数学函数。核心优势:高效处理同类型元素的多维数组,支持向量化运算。安装与导入: 核心对象:数组创建函数:数组属性:常用操作:Matplotlib 是 Python 绘图库,支持静态、动态及交互式图表,广泛用于数据可视化。安装与导入: 基础绘图:图表美化:Pandas 基于 NumPy 构建,提供高效的 DataFrame 数据结构,适合处理结构化数据。安装与导入: 核心数
2025-08-13 10:49:06
955
原创 爬虫与数据分析结合案例:中国大学排名爬取与分析全流程
爬虫阶段:通过requests和高效获取结构化表格数据预处理阶段:针对缺失值提供多种处理方案,根据实际需求选择(如均值填充适合对称分布数据)可视化阶段:用柱形图展示数量差异,饼图展示占比关系,直观呈现数据特征通过该案例可掌握数据从获取到分析的核心技能,为更复杂的数据分析项目奠定基础。
2025-08-12 08:52:25
486
原创 Matplotlib 绘图全指南
数据可视化是数据分析的 “最后一公里”,而 Matplotlib 作为 Python 最经典的绘图库,能帮你将枯燥的数字转化为直观的图表。本文从安装到实战,带你掌握 Matplotlib 的核心用法,画出专业级可视化图表。
2025-08-08 14:26:07
552
原创 Seaborn 数据可视化指南:让你的图表更惊艳
通过style:控制整体样式(默认darkgriddarkgrid:深色网格(适合数据对比)whitegrid:浅色网格(适合强调数据分布)darkwhite:无网格(简洁风格)ticks:带刻度标记(适合精确读数)context:控制元素大小(默认notebookpaper:小尺寸(适合论文插图)notebook:中等尺寸(适合 Jupyter 笔记)talk:大尺寸(适合幻灯片演示)poster:超大尺寸(适合海报展示)示例:设置浅色网格 + 幻灯片风格。
2025-08-08 14:05:38
375
原创 Pandas 基础笔记:数据处理的得力工具
Pandas 是一个开源的 Python 库,专门用于数据分析、处理和可视化。它的优势很明显:处理数据效率高,提供了容易使用的数据结构,还有各种方便的数据分析工具,能帮我们轻松应对各种数据处理任务。
2025-08-06 13:49:01
375
原创 NumPy 进阶函数笔记
搜索函数用于在数组中定位满足特定条件的元素,如最值位置、非零元素、满足条件的元素等。统计函数用于描述数组数据的分布特征,如最值、均值、分位数等,是数据分析的基础工具。排序是数据处理的常见操作,NumPy 提供了灵活的排序函数,支持不同算法和轴方向。
2025-08-06 13:43:08
437
原创 NumPy 函数进阶:字符串、数学与算术操作全解析
今天我们继续探索 NumPy 的实用功能,聚焦于字符串处理、数学运算和基础算术操作。这些函数能帮你高效处理数组中的文本和数值,是数据清洗和预处理的利器。
2025-08-04 16:59:35
1025
原创 NumPy 进阶操作:数组变形与运算技巧
大家好!上一篇我们介绍了 NumPy 的基础 ——Ndarray 数组的创建和基本属性。今天我们继续深入,聊聊 NumPy 中最核心的,包括广播机制、迭代方法、形状修改和数组翻转等。这些操作是数据预处理和数值计算的基础,掌握它们能让你的代码更高效、更简洁。
2025-08-01 19:39:16
594
原创 NumPy 入门:科学计算的核心库
NumPy(Numerical Python)是 Python 中用于科学计算的核心库,专为处理设计。它能直接对整个数组执行数学运算,大幅减少循环语句的使用,同时提供了丰富的数学函数,让数据处理和数值计算变得高效简洁。无论是数据分析、机器学习还是科学计算,NumPy 都是基础工具 —— 后续的 Pandas、Matplotlib 等库都依赖于它的数据结构。
2025-07-31 16:19:42
725
原创 用 BeautifulSoup 轻松搞定网页数据解析
BeautifulSoup 是一个专注于网页解析的 Python 库,它就像一个 "网页拆解工",能把复杂的 HTML/XML 文档转换成易于操作的树形结构,让你可以轻松导航、搜索和提取数据。简单易用:提供直观的 API,无需深入了解 HTML 语法也能上手自动处理编码:自动将输入转为 Unicode,输出转为 UTF-8,彻底告别中文乱码烦恼灵活解析:支持多种解析器,可根据需求选择速度快或容错性强的方案强大的搜索能力:支持标签、属性、文本等多种方式定位数据解析器选择:优先用lxml。
2025-07-30 16:55:52
765
原创 PyMySQL:Python 操作 MySQL 数据库全指南
PyMySQL 是 Python3 中用于连接和操作 MySQL 数据库的开源库,实现了 Python 数据库 API v2.0,是 MySQLdb 的替代方案,支持与 MySQL 数据库的交互(如增删改查、事务处理等)。
2025-07-29 15:46:19
1454
原创 第八课:MySQL 数据库进阶操作
插入新数据可同时插入多条记录,字段与值需一一对应。:更新现有数据务必添加 WHERE 条件,否则会更新表中所有记录,造成数据灾难。:删除数据同样需要 WHERE 条件限制删除范围,建议操作前先备份数据。
2025-07-25 14:53:52
313
原创 第七课:MySQL 数据库基础入门
MySQL 是目前最流行的关系型数据库之一,由瑞典 MySQL AB 公司开发,现属 Oracle 旗下。它以开源免费、性能优异、易于扩展等特点,成为 Web 应用的首选数据库。对于个人用户和中小企业,MySQL 提供的功能足以满足需求,且能大幅降低成本。
2025-07-24 15:51:37
507
原创 第六课:Requests 库与 XPath 实战指南
XPath 是一种用于在 XML/HTML 文档中定位节点的语言,支持通过路径表达式选取元素、属性或文本,常配合 lxml 库的etree模块使用,是解析网页的核心技术之一。
2025-07-23 16:29:03
882
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅