我们先来读这道题 食物链
分析一下题目,这道题还是并查集的题目,相较于之前的联通块中点的数量联通块中点的数量-CSDN博客 这道题来讲有一点不同它需要计算集合之间的距离关系。由题意,我们可知A,B,C三种动物是呈环装互相捕食的关系,所以我们来归并集合的时候,要将他们的距离关系找好。
我们假设 A 是在最顶上,其次是B,之后是C,之后还是A,以此循环。所以我们要知道到根节点的距离。看下面的代码
#include <iostream>
using namespace std;
const int N = 50010;
int n, m;
int p[N], d[N];
int find(int x)
{
if (p[x] != x)
{
int t = find(p[x]);
d[x] += d[p[x]];
p[x] = t;
}
return p[x];
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) p[i] = i;
int res = 0;
while(m -- ){
int t, x, y;
scanf("%d%d%d", &t, &x, &y);
if(x > n || y > n) res ++;
else {
int px = find(x), py = find(y);
if(t == 1){
if(px == py && (d[x] - d[y]) % 3) res ++;
else if(px != py){
p[px] = py;
d[px] = d[y] - d[x];
}
}
else if(t == 2){
if(py == px && (d[x] - d[y] - 1) % 3) res ++;
else if(px != py) {
p[px] = py;
d[px] = d[y] - d[x] + 1;
}
}
}
}
printf("%d",res);
return 0;
}
题库和代码思想都是取自yxc,y总的思想,建议可以关注一下acwing网站AcWing - 快乐学习生活,尽在AcWing。
我们先从主函数开始看,输入n个动物,k个查询。
for (int i = 1; i <= n; i ++ ) p[i] = i; 表示初始化祖宗集合,使每个点的祖宗节点都指向自己。
int res = 0;初始化说假话的答案。
之后对于m个查询进行循环,如果说的数字大于n(总的动物个数),直接视为假话。在这之后,如果是1类查询,那么就按照并查集的归并操作来做(将节点指向他们共同的父节点)(具体见 合并集合(每周一类)-CSDN博客)如果本来就是在同一个集合中的话,并且相差不为3的整数的话,那么就res ++。如果不在一个集合中,需要注意的是计算距离要将他们的距离算上,新节点到原x父节点的距离是dy-dx,由于这里x和y是同一类,就表示是在一个集合里了。
对于第2类查询,和第一类查询差不多,就是将判断类别判断和距离的改变分别加上1。因为新一类表示y吃x,所以,y是x的下一类,y比x离根节点更远一个节点。
具体图示如下:
最后输出结果就好了。对于并查集,可以参考前两节内容联通块中点的数量-CSDN博客 和合并集合(每周一类)-CSDN博客。
合并查集中主要讲的是并查集的基本操作:合并集合和查询集合是否是同一个集合
联通块中点的数量主要讲:如何描述一个并查集中的点的个数,并保证可以查询到。
这节讲的是如何判断各个并查集之间的距离问题。根本上是让集合之间相互有联系。