D-Cirno’s Perfect Equation Class
题意:
给定k,c,n,满足 k * a + b = c ,c = x * b ,gcd(a,b)>= n,求满足条件的a,b的对数。
题解:
枚举 b ,通过 k * a + b = c,求出 a ,再通过 gcd(a,b)>= n判断是否满足条件。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int gcd(int a,int b){
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
int T;
cin>>T;
while(T--)
{
int cnt=0;
int k,c,n;
cin>>k>>c>>n;
for(int i=1;i<=sqrt(c);i++)
{
if(c%i==0)
{
if(c!=i&&(c-i)%k==0&&gcd(i,(c-i)/k)>=n) cnt++;
if(c/i!=c&&(c-(c/i))%k==0&&gcd(c/i,(c-(c/i))/k)>=n) cnt++;
}
}
cout<<cnt<<endl;
}
}
G-Go to Play Maimai DX
题意:
好区间满足至少包含 1 个 1 ,1 个 2 ,1 个 3 ,和 k 个 4 ,我们需要在一个给定长度为 n 的数组里面找到长度最小的好子区间。第一行输入 n 和 k ,第二行输入长度为 n 的数组。
题解:
用双指针记录每次符合条件的区间,并在每次找到后更新长度。
Tag:
双指针
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int a[N];
int cnt[5];
int main()
{
int n,k;
cin>>n>>k;
int re=n;
for(int i=1;i<=n;i++) cin>>a[i];
int l=0,r=0;
while(r<=n)
{
while(!(cnt[1]&&cnt[2]&&cnt[3]&&cnt[4]>=k))
{
r++;
cnt[a[r]]++;
if(r>n) break;
}
while(cnt[1]&&cnt[2]&&cnt[3]&&cnt[4]>=k)
{
l++;
cnt[a[l]]--;
}
re=min(re,r-l+1);
}
cout<<re<<endl;
return 0;
}