算法的时间复杂度

对于一个算法(或者程序)来说,我们一般会去衡量这个算法(或者程序)好坏,而衡量标准,就是他的复杂度

用斐波那契数列来举例子

long long Fib(int N)
{
    if(N < 3)
    return 1;
    return Fib(N-1) + Fib(N-2);
}

通过这个代码可以看到,虽然代码量很少,但是真的要运行,花费的时间会非常的多,所以我们会通过两个复杂度来判断他的好坏:

  • 时间复杂度                     
  • 空间复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

所以接下来我们重点探究时间复杂度


时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间(是一个函数式)

一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

简单来说:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

用一个例子来说明:

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

提问:这个Func1函数的语句运行了多少次?

从这里我们可以看到,这个函数里有一个嵌套for循环,一个for循环和一个while循环

他们的条件分别是:i < N;   j < N;   k < 2 * N;   M--

我们知道,只有当一个函数内的所有语句执行完之后才算该函数执行完毕

所以对于这个函数而言,要满足嵌套for循环,for循环和while循环的条件才能执行完毕

以N为时间复杂度函数为参数而言,该函数式为:

  F(N) =  N ^ 2 + 2 * N + 10  

但是假如N非常之大的话,站在影响的角度来说:

N ^ 2 对于F(N)的影响最大 ,其次是 2 * N,最小是 10

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法


大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号(一个估算)

它的使用方法如下:

1、用常数1取代运行时间中的所有加法常数

2、在修改后的运行次数函数中,只保留最高阶项

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶

由于只是计算大概的执行次数,我们便可以只取对次数影响最大的项(最高阶项)来表示

遵守规则使用大O的渐进表示法以后,上面代码的Func1的时间复杂度为:

                                                                O(N^2)  

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数

再看几串代码

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

这个代码for循环满足条件是k >=100,所以我们会认为表达方式是O(100)

但是根据大O表示法的规则,常数的表达方式为1,所以这里应该为:

                                                                        O(1)  

对于这里,1不是执行的次数,而是常数次

也就意味着,不管条件如何变化,满足条件都只有一种,也就是k>=100

再看一个函数

const char * strchr ( const char * str, int character )
{
    int N = strlen(str);
    for(int i 0 ; i < N; i++)
    {
        if(*str + i == character)
            return character;
    }
}

strchr 是一个内置函数,用来寻找目标字符串内的一个character字符

对于这个函数的时间复杂度而言,我们不好下判断

由于不知道在什么时候会找到,有可能第一个字符就是所要寻找的,也有可能最后一个才是

所以

有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

对于这种,我们一般认为:

在实际中一般情况关注的是算法的最坏运行情况

所以字符串中搜索数据时间复杂度为:

                                                                        O(N)   


下面来几个例子帮助我们更好地理解

void Func3(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

对于Func3而言,只存在一个for循环和while循环,一般会认为是O(2 * N)

但是根据大O表示法的规则,这里得出时间复杂度为:

                                                                       O(N) 


void Func4(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

对于Func4而言,此处有两个for循环,需分别满足M与N的条件,由于不知道M与N的具体值,不可用常量来表示,所以相加这里得出时间复杂度为:

                                                                       O(M+N) 

(如果有说明M远大于N或者N远大于M,可以忽略不计小的数)


void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

此处是冒泡排序法的实现原理代码,操作执行最好N次,最坏执行了(N*(N+1)/2次

通过大O表示法的规则,得出时间复杂度为:

                                                                 O(N^2)


int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

此处是二分查找法的实现原理代码,根据二分查找法的原理,我们可以知道每次循环都会令数组变为上一次的一半,若数组总长度为N,则最大能执行的次数为 N / 2 / 2 / 2/ ... / 2 = 1

假设找了x次,那么除了x个2,由于顺着思路来想的话,2 ^ x = N

那么倒过来想,x即为x = log N,所得时间复杂度为:

                                                                     O(log N)


long long Fac(size_t N)
{
    if(0 == N)
    return 1;
    return Fac(N-1)*N;
}

对于这种递归函数而言,我们可以通过画图更好的理解他的原理

 函数每次递进,N - 1, 直到N == 0时,递进结束,开始回推,根据上图我们可以得出

该函数递归执行了N+1次(因为当N为0时也会进行一次调用)

再根据大O表示法的规则,所得时间复杂度为:

                                                                        O(N)


long long Fib(size_t N)
{
    if(N < 3)
        return 1;
 
    return Fib(N-1) + Fib(N-2);
}

可以看出,这是一个斐波那契数列,对于这个函数而言,他的时间复杂度如何求呢?

我们把它的函数调用过程画出来:

左边为每一行和的,中间为函数调用示意图,右边为抽象函数调用图形三角形

由于斐波那契数列求和也是等比数列求和

所以我们可以通过等比数列的错位相减法来求出和

使用错位相减法:

所得最终和为:

 

 遵循大O表示法,所以斐波那契数列求和的时间复杂度为:

                                                                    O(2^N)

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值