7-1 树的同构

7-1 树的同构

题目:给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

fig1.jpg
图1
img
图2

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

解决

// 7-1 树的同构.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
/*
int Isomorphic( Tree T1, Tree T2 ){    
    if(T1==NULL && T2==NULL)   
		return 1;
    else if(T1==NULL || T2==NULL || T1->Element!=T2->Element)   
		return 0;
    return (Isomorphic(T1->Left,T2->Left)&&Isomorphic(T1->Right,T2->Right)) || (Isomorphic(T1->Right,T2->Left)&&Isomorphic(T1->Left,T2->Right));
}
*/

#include <iostream>
#include<vector>
using namespace std;
typedef struct TNode* Position;
typedef Position BiTree;
struct TNode {
    char Data;
    BiTree Left;
    BiTree Right;
    char le, ri;//用来连接子节点
};
int Isomorphic(BiTree T1, BiTree T2);
int main()
{
    int n1,n2;
    char d;
    char l, r;
    BiTree t1=new (struct TNode), t2=new(struct TNode);
    vector<BiTree> v1, v2;
    cin >> n1;
    for (int i = 0; i < n1; i++)
    {
        cin >> d >> l >> r;
        BiTree b = new(struct TNode);
        b->Data = d;
        b->Left = NULL;
        b->Right = NULL;
        b->le = l;
        b->ri = r;
        v1.push_back(b);
    }
    cin >> n2;
    for (int i = 0; i < n2; i++)
    {
        cin >> d >> l >> r;
        BiTree b = new(struct TNode);
        b->Data = d;
        b->Left = NULL;
        b->Right = NULL;
        b->le = l;
        b->ri = r;
        v2.push_back(b);
    }
    if (n1 != n2)
        cout << "No";//结点数不相等直接No
    else {
        int N[10];
        int M[10];//记录谁不是孩子结点,不是孩子结点就是根节点
        memset(N, 0, sizeof(N));
        memset(M, 0, sizeof(M));
        for (int i = 0; i < n1; i++)
        {
            if (v1[i]->le == '-')
                v1[i]->Left = NULL;
            else
            {
                v1[i]->Left = v1[(int)(v1[i]->le - '0')];
                N[(int)(v1[i]->le - '0')] = 1;
            }
            if (v1[i]->ri == '-')
                v1[i]->Right = NULL;
            else
            {
                v1[i]->Right = v1[(int)(v1[i]->ri - '0')];
                N[(int)(v1[i]->ri - '0')] = 1;
            }
            if (v2[i]->le == '-')
                v2[i]->Left = NULL;
            else
            {
                v2[i]->Left = v2[(int)(v2[i]->le - '0')];
                M[(int)(v2[i]->le - '0')] = 1;
            }
            if (v2[i]->ri == '-')
                v2[i]->Right = NULL;
            else
            {
                v2[i]->Right = v2[(int)(v2[i]->ri - '0')];
                M[(int)(v2[i]->ri - '0')] = 1;
            }
        }
        for (int i = 0; i <n1; i++)//特别注意找根节点
        {
            if (!N[i])
            {
                t1 = v1[i];
            }
            if (!M[i])
            {
                t2 = v2[i];
            }
        }
        int j = Isomorphic(t1, t2);
        if (j == 1)
            cout << "Yes";
        else
            cout << "NO";
    }
}

    int Isomorphic(BiTree T1, BiTree T2) {
        if (T1 == NULL && T2 == NULL)
            return 1;
        else if (T1 == NULL || T2 == NULL || T1->Data != T2->Data)
            return 0;
        else
        return (Isomorphic(T1->Left, T2->Left) && Isomorphic(T1->Right, T2->Right)) || (Isomorphic(T1->Right, T2->Left) && Isomorphic(T1->Left, T2->Right));
    }//递归实现

对于这个题目我感觉最难的是把输入结构变成一个树,在进行对比,用递归算法就能很好的将它完成,但构成树,网上很多人是用结构体数组来实现的,会比我这个代码量少,而且时间复杂度也低很多。不过这也算是我自己独立完成的一题。链表更容易理解(我个人觉得)

对于这个问题,可以考虑递归判断两个是否同构。具体而言,需要判断根节点是否相同,左子是否同构,右子是否同构。同时,需要注意左右子的位置是可以互换的,因此还需要判断左子是否同构右子。 以下是代码实现: #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXN 10010 int n; char data1[MAXN], data2[MAXN]; int left1[MAXN], left2[MAXN], right1[MAXN], right2[MAXN]; /* 等价数组,表示以root1和root2为根的两棵子是否同构 */ int eqv[MAXN][MAXN]; int build(char *data, int *left, int *right) { int root = -1; if (*data != '-') { root = *data - 'A'; if (left[root] == -1 && right[root] == -1) { left[root] = right[root] = -1; } else { left[root] = build(data + 2, left, right); right[root] = build(strchr(data + 2, ' ') + 1, left, right); if (left[root] > right[root]) { int temp = left[root]; left[root] = right[root]; right[root] = temp; } } } return root; } /* 判断以root1和root2为根的两个子是否同构 */ int isomorphic(int root1, int root2) { if (root1 == -1 && root2 == -1) { return 1; } else if (root1 == -1 || root2 == -1) { return 0; } if (data1[root1] != data2[root2]) { return 0; } if (eqv[root1][root2]) { /* 已经计算过了,直接返回结果 */ return eqv[root1][root2] - 1; } /* 左右子位置可以互换 */ if ((isomorphic(left1[root1], left2[root2]) && isomorphic(right1[root1], right2[root2])) || (isomorphic(left1[root1], right2[root2]) && isomorphic(right1[root1], left2[root2]))) { eqv[root1][root2] = 2; /* 记录结果 */ return 1; } else { eqv[root1][root2] = 1; /* 记录结果 */ return 0; } } int main() { scanf("%d", &n); memset(left1, -1, sizeof(left1)); memset(left2, -1, sizeof(left2)); memset(right1, -1, sizeof(right1)); memset(right2, -1, sizeof(right2)); for (int i = 0; i < n; i++) { char c, lc, rc; scanf(" %c %c %c", &c, &lc, &rc); data1[i] = data2[i] = c; left1[i] = left2[i] = lc == '-' ? -1 : lc - '0'; right1[i] = right2[i] = rc == '-' ? -1 : rc - '0'; } /* 构建两棵 */ build(data1, left1, right1); build(data2, left2, right2); /* 判断是否同构 */ if (isomorphic(0, 0)) { printf("True\n"); } else { printf("False\n"); } return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值