7-1 树的同构
题目:给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1 |
图2 |
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
解决:
// 7-1 树的同构.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
/*
int Isomorphic( Tree T1, Tree T2 ){
if(T1==NULL && T2==NULL)
return 1;
else if(T1==NULL || T2==NULL || T1->Element!=T2->Element)
return 0;
return (Isomorphic(T1->Left,T2->Left)&&Isomorphic(T1->Right,T2->Right)) || (Isomorphic(T1->Right,T2->Left)&&Isomorphic(T1->Left,T2->Right));
}
*/
#include <iostream>
#include<vector>
using namespace std;
typedef struct TNode* Position;
typedef Position BiTree;
struct TNode {
char Data;
BiTree Left;
BiTree Right;
char le, ri;//用来连接子节点
};
int Isomorphic(BiTree T1, BiTree T2);
int main()
{
int n1,n2;
char d;
char l, r;
BiTree t1=new (struct TNode), t2=new(struct TNode);
vector<BiTree> v1, v2;
cin >> n1;
for (int i = 0; i < n1; i++)
{
cin >> d >> l >> r;
BiTree b = new(struct TNode);
b->Data = d;
b->Left = NULL;
b->Right = NULL;
b->le = l;
b->ri = r;
v1.push_back(b);
}
cin >> n2;
for (int i = 0; i < n2; i++)
{
cin >> d >> l >> r;
BiTree b = new(struct TNode);
b->Data = d;
b->Left = NULL;
b->Right = NULL;
b->le = l;
b->ri = r;
v2.push_back(b);
}
if (n1 != n2)
cout << "No";//结点数不相等直接No
else {
int N[10];
int M[10];//记录谁不是孩子结点,不是孩子结点就是根节点
memset(N, 0, sizeof(N));
memset(M, 0, sizeof(M));
for (int i = 0; i < n1; i++)
{
if (v1[i]->le == '-')
v1[i]->Left = NULL;
else
{
v1[i]->Left = v1[(int)(v1[i]->le - '0')];
N[(int)(v1[i]->le - '0')] = 1;
}
if (v1[i]->ri == '-')
v1[i]->Right = NULL;
else
{
v1[i]->Right = v1[(int)(v1[i]->ri - '0')];
N[(int)(v1[i]->ri - '0')] = 1;
}
if (v2[i]->le == '-')
v2[i]->Left = NULL;
else
{
v2[i]->Left = v2[(int)(v2[i]->le - '0')];
M[(int)(v2[i]->le - '0')] = 1;
}
if (v2[i]->ri == '-')
v2[i]->Right = NULL;
else
{
v2[i]->Right = v2[(int)(v2[i]->ri - '0')];
M[(int)(v2[i]->ri - '0')] = 1;
}
}
for (int i = 0; i <n1; i++)//特别注意找根节点
{
if (!N[i])
{
t1 = v1[i];
}
if (!M[i])
{
t2 = v2[i];
}
}
int j = Isomorphic(t1, t2);
if (j == 1)
cout << "Yes";
else
cout << "NO";
}
}
int Isomorphic(BiTree T1, BiTree T2) {
if (T1 == NULL && T2 == NULL)
return 1;
else if (T1 == NULL || T2 == NULL || T1->Data != T2->Data)
return 0;
else
return (Isomorphic(T1->Left, T2->Left) && Isomorphic(T1->Right, T2->Right)) || (Isomorphic(T1->Right, T2->Left) && Isomorphic(T1->Left, T2->Right));
}//递归实现
对于这个题目我感觉最难的是把输入结构变成一个树,在进行对比,用递归算法就能很好的将它完成,但构成树,网上很多人是用结构体数组来实现的,会比我这个代码量少,而且时间复杂度也低很多。不过这也算是我自己独立完成的一题。链表更容易理解(我个人觉得)