yolov5图片及视频检测推理

yolov5检测+推理

说明

本文环境为vscode,anaconda下的yolo环境,代码为官网yolov5-7.0

切换环境

在训练及检测之前需切换至搭建的对应的yolo环境

1.检测代码为detect.py

如你要检测你自己的图片,需已成功训练对应数据集
这是我训练官网数据集得到的结果,此路径下的best.pt便是此次训练的最优模型文件
在这里插入图片描述

2.更改模型及需检测的图片的路径

打开detect代码,找到我框的weights和source参数,weights是模型文件的路径,source是需要检测的图片或者视频的路径
在这里插入图片描述

改正后的效果图 (路径注意使用 / )
在这里插入图片描述

3.接着运行detect.py,得到检测结果

在这里插入图片描述打开对应的路径即可看到检测结果 (注:如果个别图片没有检测出来,说明模型的精度不高,需要重新训练模型,加轮数或者加图片,和环境本身没有太大关系)
在这里插入图片描述
检测视频同理,把存放视频的路径输到source参数即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值