1. 树概念及结构
1.1树概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因
为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
- 根结点:根节点没有前驱结点。
- 除根节点外,其余结点被分成是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
- 因此,树是递归定义的。
1.2树的常见概念
- 结点的度:一个结点含有的子树的个数称为该结点的度;如上图:A 的度为 3
- 叶结点或终端结点:度为 0 的结点成为叶结点;如上图,F、H、I、J、K、L都为叶结点
- 非终端结点或分支结点:度不为 0 的结点;如上图,B 、C、D、E、G都为分支结点
- 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点;如上图,A是 B 的父结点
- 孩子结点或子结点:一个结点含有的子树的根结点称为该节点的子结点,如上图,B 是 A 的孩子结点
- 兄弟结点:具有相同父结点的节点互称为兄弟结点;如上图,B、C、D 互称为兄弟结点
- 树的度:一棵树中,最大的结点称为树的度;如上图,树的度是3
- 结点的层次:从根开始定义起,根为第1层,跟的子结点为第2层,以此类推;
- 树的高度或深度:树中结点的最大层次;如上图:树的高度是4
- 堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:E 和 G 互为堂兄弟结点
- 结点的祖先:从根到该结点所经分支上的所有结点;如上图, A 是所有结点的祖先
- 子孙:以某结点为根的子树中任意结点都称为该节点的子孙;如上图,所有结点都是 A 的子孙
- 森林:由 m ( m > 0 ) 棵互不相交的树的集合称为森林。
小剧场:下面的这些都属于树嘛?
注意:子树是不相交的;
除了根结点外,每个结点有且仅有一个父结点;
一颗N个结点的树由 N-1条边。
想必大家已经知道答案了吧。
1.3树的表示
//树的存储
//法一:当说明了树的度,就可以使用数组
#define N 3;
struct TreeNode
{
int val;
struct TreeNode* childArr[N];
};
//缺陷:可能会空间浪费
//法二:用顺序表存储孩子指针
struct TreeNode
{
int val;
//……
};
//用C的数据结构不太好实现,因此忽略
//法三:左孩子右兄弟
struct TreeNode
{
int val;
struct TreeNode* firstchild;
struct TreeNode* nextbrother;
};
接下来,我们来着重讲解第三种方法:左孩子右兄弟,图解如下:
问题来了,那我们要怎么找到所有的孩子,先用 firstchild 找到第一个孩子,再用 nextbrother 来找到第二个孩子,直至 nextbrother 为空,即所有的孩子都找到了。代码实现如下:
//定义一个结构体变量
struct TreeNode* Anode;
struct TreeNode* child = Anode->firstchild;
while (child)
{
printf("%d->", child->val);
child = child->nextbrother;
}
2.二叉树概念及结构
2.1概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒。
2.2数据结构中的二叉树
从上图可以看出:
- 二叉树不存在度大于2的结点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
2.3特殊的二叉树
- 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
- 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.4二叉树的存储结构
二叉树一般可以使用两种存储结构,一种顺序结构,一种链式结构。
2.4.1顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
满二叉树 / 完全二叉树规律:
leftchild = parent * 2 + 1
rightchild = parent * 2 + 2
parent = ( child - 1 )/ 2
在任意位置通过下标可以找到父亲或者孩子
非完全二叉树不适合用数组存储。
2.4.2链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。
3.二叉树的顺序结构及实现
3.1二叉树的顺序结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
3.2堆的概念及结构
堆:非线性结构,完全二叉树
小堆:树中任意一个父亲都<=孩子
大堆:树中任意一个父亲都>=孩子
堆具体用代码怎么实现呢?欲知后事如何,请听下回分解。