每日一题(错题分析)

'shy'的子序列的个数

这一题,我一开始就没什么思路,我就开始暴力枚举了,就是定义i,j(找i后面的),k(找j后面的),很显然这种方法超时了。所以我就想使用动态规划,但是空间又超了,我就很懵,到最后听老师讲空间优化(使用三个变量(滚动数组))进行优化才解决这道题

 1.暴力枚举

定义: i 指针来找, 找到了s,后在定义 i  + 1 位置为j 指针 找 h,找到定义k指针找y

 public static void main1(String[] args) {
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        while (in.hasNextLine()) { // 注意 while 处理多个 case
            in.nextLine();
            String str = in.nextLine();
            char[] chs = str.toCharArray();
            int count = 0;
            for (int i = 0; i < chs.length; i++) {
                if (chs[i] == 's'){
                    for (int j = i + 1; j < chs.length; j++) {
                        if (chs[j] == 'h') {
                            for (int k = j + 1; k < chs.length; k++) {
                                if (chs[k] == 'y') {
                                    count++;
                                }
                            }
                        }
                    }
                }
            }
            System.out.println(count);
        }
    }

2. 动态规划

多状态dp表示 的状态表示
1. S[i] 以i位置为结尾的有多少个 'S'
2. H[i] 以i位置为结尾的有多少个 'SH'
3. Y[i] 以i位置为结尾的有多少个 'SHY'

状态转移方程: S[i]     1. i位置为'S'   S[i] = S[i - 1] + 1
                     2. i位置不为'S' S[i] = S[i - 1]
状态转移方程: H[i]     1. i位置为'H'   H[i] = H[i - 1] + S[i - 1]  因为sshh 第四个为h让本来有两个sh + s(h)s(h)的个数
                      2. i位置不为'H' H[i] = H[i - 1]

public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        String str = " " + sc.next();
        int[] s = new int[n + 1];
        int[] h = new int[n + 1];
        int[] y = new int[n + 1];
        char[] chs = str.toCharArray();
        for (int i = 1; i < chs.length; i++) {
            if (chs[i] == 's'){
                s[i] = s[i - 1] + 1;
                h[i] = h[i - 1];
                y[i] = y[i - 1];
            }else if (chs[i] == 'h'){
                h[i] = h[i - 1] + s[i - 1];
                s[i] = s[i - 1];
                y[i] = y[i - 1];
            } else if (chs[i] == 'y') {
                y[i] = y[i - 1] + h[i - 1];
                s[i] = s[i - 1];
                h[i] = h[i - 1];
            }else {
                s[i] = s[i - 1];
                h[i] = h[i - 1];
                y[i] = y[i - 1];
            }
        }
        System.out.println(y[n]);
    }

3.空间优化 

使用三个变量进行优化,因为只需要用到前面一个状态,其他状态都不需要,这样也不需要不处理,不为s位置设置为s[i] = s[i - 1],因为等于和不处理一样,这就像求斐波那契一样。

public static void main3(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        String str = " " + sc.next();
        int s = 0, h = 0, y = 0;
        char[] chs = str.toCharArray();
        for (int i = 1; i < chs.length; i++) {
            if (chs[i] == 's') {
                s += 1;
            } else if (chs[i] == 'h') {
                h += s;
            } else if (chs[i] == 'y') {
                y += h;
            }
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风止￴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值