pytorch练习3 实现逻辑斯特回归模型

本文介绍了如何使用PyTorch构建一个简单的逻辑回归模型,通过sigmoid函数将线性预测值映射到0-1区间,利用BCELoss进行二元交叉熵优化。模型在给定数据集上训练,并绘制了预测概率随输入变化的图形。
摘要由CSDN通过智能技术生成

 

在线性变换的基础上对y进行sigmoid()函数变换,将值映射到0-1的区间,此时y_hat是为1的概率

用BCEloss去进行梯度下降优化。基本和线性回归差不多,只不过变成了分类模型。

import torch
import numpy as np
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])

class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear=torch.nn.Linear(1,1)

    def forward(self,x):
        y_pred=torch.sigmoid(self.linear(x))
        return y_pred

model=LogisticRegressionModel()

criterition=torch.nn.BCELoss(reduction='sum')
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)

for epoch in range(1000):
    y_pred=model(x_data)
    loss=criterition(y_pred,y_data)
    print(epoch,loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

x_test=torch.Tensor([[4]])
y_test=model(x_test)
print('y_test=',y_test.item())


#画图代码
x=np.linspace(0,10,200)
x_t=torch.Tensor(x).view((200,1))
y_t=model(x_t)
y=y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Hours')
plt.ylabel('Probility of pass')
plt.grid()
plt.show()

得到的概率图如下,在x=2.5的时候通过的概率为0.5 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值