在线性变换的基础上对y进行sigmoid()函数变换,将值映射到0-1的区间,此时y_hat是为1的概率
用BCEloss去进行梯度下降优化。基本和线性回归差不多,只不过变成了分类模型。
import torch
import numpy as np
import matplotlib.pyplot as plt
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear=torch.nn.Linear(1,1)
def forward(self,x):
y_pred=torch.sigmoid(self.linear(x))
return y_pred
model=LogisticRegressionModel()
criterition=torch.nn.BCELoss(reduction='sum')
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
for epoch in range(1000):
y_pred=model(x_data)
loss=criterition(y_pred,y_data)
print(epoch,loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
x_test=torch.Tensor([[4]])
y_test=model(x_test)
print('y_test=',y_test.item())
#画图代码
x=np.linspace(0,10,200)
x_t=torch.Tensor(x).view((200,1))
y_t=model(x_t)
y=y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Hours')
plt.ylabel('Probility of pass')
plt.grid()
plt.show()
得到的概率图如下,在x=2.5的时候通过的概率为0.5