室内热环境对人类舒适度和建筑能耗都有显著影响。先前的研究者通过热平衡模型和适应性模型将热舒适度与热环境联系起来。作为热平衡模型的代表,预测平均投票(PMV)和预测不满意百分比(PPD)模型考虑了四个热环境变量:室内空气温度(Ta)、平均辐射温度(Tmrt)、空气速度(Va)和相对湿度(RH),以及两个个人变量[1]。进一步的研究为自然通风的建筑发展了一个更具体的适应模型,该模型从Ta和Tmrt计算操作温度(To),并根据室外空气温度定义To的上限和下限[2-5]。由于Ta通常被视为热舒适的基本决定因素,因此成为许多关于热环境和相关节能策略研究的目标变量[6-9]。大学教室对室内空气温度提出了更高的要求,因为这可能显著影响学生的主观满意度和他们的学习表现[10-12]。结果,大学教学楼的教室区通常具有高能源使用强度[13-15],其中HVAC系统的能耗占很大比例[14]。
以前的研究者在探索有效的建筑空间设计和占用策略以改善室内热环境时,严重依赖于基于物理的模拟软件(即白箱模型)。Liu和Ren[15]使用Autodesk Ecotect Analysis对图书馆和宿舍楼进行模拟,分析与热舒适相关的规划、形式设计、建筑设计、系统设计和设备使用策略。Camacho-Montano等人[17]使用DesignBuilder[18]评估学校建筑的过热条件并评估自然通风、遮阳设备和玻璃等被动措施。尽管模拟方法取得了丰硕的科学成果,但它们对详细建筑信息作为输入的要求以及模拟输出的准确性一直存在争议[22,23]。模拟的室内空气温度通常与实测值存在一定偏差,这主要归因于假设的建筑知识与实际情况之间的偏差以及来自外部环境的不可预测的干扰[8,17,22,24,25]。此外,这些研究必须设计大量可比较的情景并进行多次模拟,以评估模拟程序中规定的参数效果,这不仅受限制,而且耗时[23]。
最近,统计模型已被应用于室内热性能的预测。这些模型可以分为黑箱模型和灰箱模型。黑箱模型基本上是数据驱动的,对研究人员具有吸引力,因为它们在获取更好的精度和提供快速预测的同时,不需要对建筑本身有明确的物理知识[22]。许多研究者已经开发了黑箱模型来预测室内温度,仅使用室内外环化复杂的热网络,用于空气温度预测。其他研究则直接使用数学模型将建筑物理变量与预测值直接相关,这种方法在分析多个建筑特征时更为灵活。Catalina等人[38]使用多项式回归(PR)模型预测建筑特征如形状因子、平均U值和窗户到地面面积比的月度取暖需求,并发现建筑形状与能耗之间有强关联。Zuurbier等人[39]使用单变量和多变量线性回归(LR)模型,根据建筑变量如位置、大小、窗户面积和方向预测室内外空气温差,并识别了建筑位置和窗户配置的重大影响。
在这种背景下,运用统计方法量化建筑物理因素对室内空气温度的影响成为一个有前景的课题。表1总结了以前相关的工作。白箱模型专注于物理模式的检测,黑箱模型在模型精度方面表现突出,而灰箱模型结合了两者的优势,已成为评估建筑设计和运营策略的有效替代方案。然而,针对建筑空间设计和占用因素的系统分析仍然稀缺,尤其是聚焦于公共建筑如大学教学楼的研究更是少见。为填补这些知识空白,本工作收集了实际教学楼的数据以及室内外环境数据,构建了基于物理的特征,并通过统计方法进行了分析。
具体来说,本研究选择了多元线性回归(MLR)和随机森林回归(RFR)作为方法,这两种方法在预测精度和模型可解释性之间进行了权衡[40]。与非线性方法相比,MLR具有很高的可解释性,但它只能描述模型系数的线性关系。相比之下,RFR是一种“更黑”的决策树基方法,具有更高的灵活性但较低的解释性。RFR模型可以提供特征重要性值,但没有物理意义。这两种方法的结果进行了比较和综合,以便得出更可靠和全面的结论。本文设定了几个目标:
- 量化并排名建筑空间设计和占用特征对大学教室室内空气温度的影响。
- 根据影响模式提供有关建筑空间设计和占用计划的有用见解。
- 探索使用精心挑选的建筑特征进行室内空气温度预测的技术潜力。
通用引言模板
- 论证了研究课题的重要性
- 为读者提供了背景事实信息
- 跟在第1句和第2句的做法是一样的,只不过方式更具体,通过引用参考文献来支持背景事实和重要性声明
- 描述研究领域的一般性问题或者当前的研究焦点
- 扩展了研究领域的问题范围/当前的焦点
- 将上面一般的问题和已发表的研究联系起来,并引用了其他研究
- 提到该领域的关键研究
- 指明研究的问题或空白
- 指明当前的论文或研究工作
- 概述了论文中的方法
- 使用明确标识研究成果的语言(“高兴”的字眼)来宣布主要结果
四个部分
1.论证研究主题/领域的重要性;给出背景事实和信息;给出研究领域的一般性问题/当前研究焦点.
2.呈现已有研究和/或当前的研究和贡献:研究“地图”
3.确定已有研究工作的空白;描述你要解决的问题;呈现你的动机和/或假设;确定研究机会
4.描述当前的论文,有时会提及目标/结果1方法1结论,并经常包括“高兴”的字眼
这篇论文引言部分的结构可以按照提到的11个引言特点来划分和分类:
- 论证了研究课题的重要性:
- 首句明确指出室内热环境对人类舒适度和建筑能耗的显著影响,确立了研究的重要性。
- 为读者提供了背景事实信息:
- 通过描述热平衡模型和适应性模型,以及它们如何与热舒适度相关联。
- 通过引用参考文献来支持背景事实和重要性声明:
- 引用文献[1-25]详细说明了先前研究和相关模型的应用及其结果,加强了背景的学术权威性。
- 描述研究领域的一般性问题或者当前的研究焦点:
- 讨论了室内热环境调节的一般问题,特别是在教育建筑中的应用和对能耗的影响。
- 扩展了研究领域的问题范围/当前的焦点:
- 描述了现有白箱模型在模拟室内热环境时的限制和挑战,如模拟与实际观测数据之间的偏差。
- 将上面一般的问题和已发表的研究联系起来,并引用了其他研究:
- 引用了多篇研究(如文献[15, 17, 18, 22, 23]等),讨论了现有模拟工具的使用和其局限性。
- 提到该领域的关键研究:
- 指出了关于自然通风、遮阳设备和其他被动冷却措施的关键研究,以及它们在模型中的应用。
- 指明研究的问题或空白:
- 明确指出白箱模型在精确性和灵活性方面存在的问题,并指出了对黑箱和灰箱模型的需求。
- 指明当前的论文或研究工作:
- 介绍了本研究的目的,即使用统计方法来量化建筑设计对室内热环境的影响,并强调了数据的实际收集和分析。
- 概述了论文中的方法:
- 介绍了多元线性回归和随机森林回归方法,讨论了它们在预测精度和模型可解释性之间的权衡。
- 使用明确标识研究成果的语言("高兴"的字眼)来宣布主要结果:
- 虽然未直接使用“高兴”的字眼,但通过设定明确的研究目标,暗示了对实现这些目标的积极期待和潜在的积极结果。
这样的结构不仅为读者提供了全面的背景信息,还明确了研究的动机、方法和期望的成果,符合科学写作中引言部分的常规要求。