26版王道数据结构第二章知识点汇总

第二章 线性表

前言:算法题出的多,不难,但是对时间复杂度要求较高。

2.1 线性表的定义和基本操作

2.1.1 线性表的定义

        线性表是具有相同数据类型的n(n≥0)个数据元素的有限序列,其中n为表长,当n=0时线性表是一个空表。若用L命名线性表,则其一般表示为


L = (a1,a2,...an)

其中,a1是“第一个”数据元素,也称表头元素,an是“最后一个”数据元素,也称表尾元素。

        线性表具有以下特点:

        1)表中元素的个数有限

        2)表中元素具有逻辑上的顺序性,表中元素有其先后次序

        3)表中元素都是数据元素,每个元素都是单个元素

        4)表中元素的数据类型都相同,这意味着每个元素占有相同大小的空间

        5)表中元素具有抽象性,即只讨论元素间的逻辑关系,而不考虑元素究竟表示什么内容

2.1.2 线性表的基本操作

InitList(&L)           //初始化表,构建一个空的线性表
Length(L)              //求表长,返回L的长度
LocateElem(L, e)       //按值查找,在L中查找值为e的元素
GetElem(L, i)          //按位查找,获取L中第i个元素的值
ListInsert(&L, i, e)   //插入操作,在L中的第i个位置上插入指定元素e
ListDelete(&L, i, &e)  //删除操作,删除L中第i个元素,并用e返回删除元素的值
PrintList(L)           //输出操作,按前后顺序输出线性表L的所有元素值 
Empty(L)               //判空操作,若L为空表,则返回true,否则返回 false.
DestroyList(&L)        //销毁操作,销毁线性表,并释放线性表L所占用的内存空间。

//符号“&”表示C++中的引用调用,在C语言中使用指针也可达到同样效果

2.2 线性表的顺序表示

2.2.1 顺序表的定义

        线性表的顺序存储也称顺序表,顺序表的特点是表中元素的逻辑顺序与其存储的物理顺序相同。顺序表中的任意一个元素都可以随机存取,通常用高级程序设计语言中的数组来描述线性表的顺序存储结构。

        静态分配的数组大小固定,空间占满后再加入新数据会产生溢出。动态分配的数组在空间占满后会另外开辟一块更大的存储空间,将原表的数据全部拷贝到新空间,实现动态扩充空间。

        假定线性表的元素类型为ElemType,则静态分配的顺序表存储结构描述为

#define MaxSize 50           //定义线性表的最大长度

typedef struct{
    ElemTye data[MaxSize];   //顺序表的元素
    int length;              //顺序表的当前长度
}SqList;                     //顺序表的类型定义

        动态分配的顺序表存储结构描述为

#define InitSize 100         //表长度的初始定义
typedef struct{
    ElemType *data           //定义了一个动态分配的指针
    int MaxSize ,length;     //定义了一个数组的最大容量和当前长度
}SqList;                     //动态分配数组顺序表的类型定义

        C和C++的初始动态分配语句为

L.data = (ElemType*)malloc(sizeof(ElemType) *InitSize);  //C
L.data = new ElemType[InitSize];                         //C++

        顺序表的优点

        1)支持随机访问

        2)存储密度高。

        顺序表的缺点
        1)插入和删除时需移动大量的元素;

        2)顺序存储分配需要一段连续的存储空间,不够灵活。

2.2.2 顺序表上基本操作的实现

1. 顺序表的初始化
//静态
//所有元素初始化为0,表的长度初始化为0
void InitList(SqList &L){
    for(int i = 0;i<MAXSIZE;i++){
        L.data[i] = 0;
    }
    L,length = 0;
}

//动态
//分配预定义大小的数组空间,数组长度初始为0,一旦空间不足就再进行分配。
void InitList(SqList &L){
    L.data = (int*)malloc(sizeof(int)*InitSize);
    L.length = 0;
    L.MaxSize = InitSize;
}
2. 插入操作

bool ListInsert(SqList &L,int i,int e){
    if(i < 1 || i > L.length + 1)        //判断i的范围是否有效
        return false;
    if(L.length >= MaxSize)              //若当前存储空间已满则不能插入
        return false;
    for(int j = L.length;j >= i; j--){   //将第i个元素以及以后的元素后移一位
        L.data[j] = L.data[j-1];
    } 
    L.data[i-1] = e;                     //在位置i处放入e;
    L.length++;                          //表的长度加1。
    return true;
}

        顺序表插入算法的平均时间复杂度为O(n)

3. 删除操作
bool ListDelete(SqList &L,int i,int &e){
    if(i<1||i>L.length+1)                   //判断i范围是否有效
        return false;
    e= L.data[i-1];                         //将被删除的元素赋值给e
    for(int j=i;j<L.length;j++)             //将第i位置后的元素前移
        L.data[j-1] = L.data[j];
    L.length--;                             //线性表长度减1
    return true;
}

        顺序表删除算法的平均时间复杂度为O(n)

4. 按值查找(顺序查找)
int LocateElem(SqList L, int e){
    int i;
    for(i = 0; i < L.length;i++){
        if(L.data[i] == e){
            return i + 1;           //下标为i的元素值等于e,返回其位序i+1
        }
    }
    return 0;                       //退出循环,说明查找失败
}

        顺序表按值查找算法的平均时间复杂度为O(n),按序号查找的时间复杂度为O(1)

2.3 线性表的链式表示

        如果说顺序表是一根电棍,那链表就是一根项链,你觉得项链串的不好可以随时重新串,但电棍想要改装就会很麻烦。所以链表的插入和删除很简单,只需要修改指针即可,但也会失去顺序表可随机存储的特点。

2.3.1 单链表的定义

        线性表的链式存储又称单链表,它是指通过一组任意的存储单元来存储线性表中的数据元素。单链表的结点结构如下,其中data为数据域,存放数据元素;next为指针域,存放后继结点的指针。

datanext

        单链表中结点类型的描述如下

typedef struct LNode{    //定义单链表结点类型
    int data;            //数据域
    struct LNode *next;  //指针域
}LNode, *LinkList;

        单链表可以解决顺序表需要大量连续存储单元的缺点,但附加的指针域会浪费存储空间,同时也不支持随机存取

        通常使用头指针L(或者head)来标识一个单链表,指出链表的起始地址,头指针为NULL时表示一个空表。此外,为操作方便,在单链表的第一个数据结点前附加一个结点,称为头结点。头结点的数据域可以记录表长等信息,也可以不设置任何信息。单链表带头结点时,头指针指向头结点;单链表不带头结点时,头指针指向第一个数据结点。表尾结点的指针域为NULL(用“^”表示)。

        头指针和头结点的关系:不论带不带头结点,头指针始终指向链表的第一个结点,而头结点是带头结点的链表中的第一个结点,结点内通常不存储信息。

        引入头结点的优点:

        1)链表第一个数据结点的操作和其他位置一样,不用做特殊处理

        2)无论链表是否为空,头指针都是指向头结点的非空指针。空表和非空表的处理也得到了统一。

2.3.2 单链表上基本操作的实现

1. 单链表的初始化
//带头结点的单链表初始化
bool InitList(LinkList &L){
    L = (LNode*)malloc(sizeof(LNode)); //创建头结点
    L->next = NULL;                    //头结点后暂时还没有元素结点
    return true;
}

//不带头结点的单链表初始化
bool InitList(LinkList &L){
    L = NULL;
    return true;
}

//设p为结构体指针,则*p是结点本身,因此可用p->data或者*(*p).data去访问这个结点的数据域
//(*(*p) .next) .data是下一个结点中存放的数据,或者直接用p->next->data
2. 求表长操作
//带头结点
int Length(LinkList L){
    int len = 0;                //计数变量,初始为0
    LNode *p = L;
    while(p->next != NULL){
        p = p->next;
        len++;                  //每访问一个结点,计数加1
    }
    return len;
}

//不带头结点
int Length(LinkList L){
    int len = 0;
    LNode *p = L;
    while(p != NULL){           //不同点在于循环判定
        p = p->next;
        len++;
    }
    return len;
}

        求表长操作的时间复杂度为O(n)。需要注意单链表的长度不包括头结点,因此带头结点和不带头结点的单链表在求表长操作上会有所不同。

3. 按序号查找结点
LNode *GetElem(LinkList L,int i){
    LNode *p = L;                 //p指针指向当前扫描到的结点
    int j = 0;                    //记录当前结点的位序
    while(p != NULL && j < i){    //循环找到第i结点
        p = p->next;
        j++;
    } 
    return p;                     //返回第i个结点的指针或NULL
}

        按序号查找操作的时间复杂度为O(n)

4. 按值查找结点
LNode *LocateElem(LinkList L,int e){
    LNode *p = L->next;
    while(p != NULL && p->data != e){     //从第一个结点开始查找数据域为e的节点
        p = p->next;
    }
    return p;                             //找到后返回该结点指针,否则返回NULL
}

        按值查找操作的时间复杂度为O(n)

5. 插入结点操作
bool ListInsert(LinkList &L, int i, int e){
    LNode *p = L;                                  //当前扫描到的结点
    int j = 0;                                     //记录当前结点的位序,头结点是第0个结点
    while(p != NULL && j < i-1)                    //循环找到i-1个结点
        p = p->next;
        j++;
    if(p == NULL)                                  //i值不合法
        return false;
    LNode *s = (LNode *)malloc(sizeof(LNode));     
    s->data = e;
    s->next = p->next;                             //操作1
    p->next = s;                                   //操作2
    return true;
}

        需要注意的是,上述代码中操作1和操作2的顺序不能颠倒,否则先执行p->next = s后,指向其原后继结点的指针就不存在了。本算法的时间开销在于查找第i-1个元素,时间复杂度为O(n)。若在指定结点后插入新结点,则时间复杂度仅为O(1)

        扩展:对某一节点进行前插操作

        在单链表插入算法中,通常都采用后插操作,对结点的前插操作均可转化为后插操作,前提是从单链表的头结点开始顺序查找到其前驱结点,时间复杂度为O(n)

        此外,可通过将*s插入到*p后面,然后将s->data和p->交换,这样既满足逻辑关系,又能使得时间复杂度为O(1)

s->next = p->next;                  //修改指针域,不能颠倒
p->next = s;
temp = p->data;                     //交换数据域部分
p->data = s->data;
s->data = temp;
6. 删除结点操作
//把头结点看做第0个结点
//找到i-1的结点,将指针指向第i+1的结点
//释放第i的结点
bool LIstDelete(LinkList&L, int i, int &e){
    //判断第i的位置是否存在
    if(L == NULL || i < 1)
        return false;
    LNode *p;
    int j = 0;
    p = L;
    while(p != NULL && j < i - 1){
        p = p->next;
        j++;
    }
    //当i值不合法
    if(p == NULL){
        return false;
    }
    //当i-1个结点就是最后一个结点了
    if(p->next == NULL){
        return false;
    }
    LNode *q = p->next;//令q指向被删除的结点
    e = q->data;
    p->next = q->next;
    free(q);//释放结点
    return true;
}

        同插入算法一样,该算法的主要时间也耗费在查找操作上,时间复杂度为O(n)

        扩展:删除结点*p

        删除结点*p的操作也可通过删除*p的后继来实现,实质就是将其后继的值赋予其自身,然后删除后继,通俗点说,就是夺舍。

bool DeleteNode(LNode *p){
    if(p == NULL){
        return false;
    }
    LNode *q = p->next          //令q指向*p的后继结点
    p->data = p->next->data;    //和后继结点交换数据
    p->next = q->next;          //将*q结点从链表中断开
    free(q);
    return true;
}
7. 采用头插法建立单链表
LinkList List_HeadInsert(LinkList &L){          //逆向建立单链表
    LNode *s;                                   //设元素类型为整型
    int x;
    L = (LNode*)malloc(sizeof(LNode));          //创建头结点
    L->next = NULL;                             //初始为空链表
    scanf("%d", &x);                            //输入结点的值
    while(x != 9999){                           //输入9999表示结束
        s = (LNode *)malloc(sizeof(LNode));     //创建新结点
        s->data = x;
        s->next = L->next;
        L->next = s;                            //将新结点插入表中,L为头指针
        scanf("%d",&x);
    }
    return L;
}

        每个结点插入的时间为O(1),设单链表长度为n,则总时间复杂度为O(n)

8. 采用尾插法建立单链表
LinkList List_TailInsert(LinkList &L){
    int x;
    L=(LNode *)malloc(sizeof(LNode));       //创建头结点
    LNode *s, *r = L;                       //R为表尾指针
    scanf("%d", &x);                        //输入结点的值
    while(x != 9999){
        s=(LNode *)malloc(sizeof(LNode));   //给s结点分配内存
        s->data = x;
        r->next = s;
        r = s;                              //r指向新的表尾结点
        scanf("%d",&x);
    }
    r->next = NULL;                         //尾结点指针悬空
    return L;
}

        和头插法相同,时间复杂度为O(n)

2.3.3 双链表

        双链表结点中有两个指针priornext,分别指向其直接前驱和直接后驱,表头结点的prior域和表尾结点的next域都是NULL

typedef struct DNode{                   //定义双链表结点类型
    int data                            //数据域
    struct DNode *prior,*next;          //前驱和后继指针
}DNode,*DLinkList;

        双链表的按值查找和按位查找与单链表的相同,但是插入和删除不同,关键是保证在修改的过程中不断链。双链表可以和方便的找到当前结点的前驱,因此,插入、删除操作的时间复杂度都是O(1)。双链表不可以随机存取,按位查找、按值查找操作只能用遍历的方式实现,时间复杂度为O(n)

1. 双链表的插入操作
//在双链表中p所指的结点后插入结点*S
s->next = p->next;     //1
p->next->prior = s;    //2
s->prior = p;          //3
p->next = s;           //4

//上述代码的语句顺序不是唯一的,但也不是任意的,1操作必须在4操作之前,否则会断链
2. 双链表的删除操作
//删除双链表中结点*p的后继结点*q
p->next = q->next;
q->next->prior = p;
free(q);                  //释放结点空间

2.3.4 循环链表

1. 循环单链表 

       循环单链表表尾节点*r的next域指向L,表中没有指针域为NULL的结点。 循环单链表的判空条件不是头结点的指针是否为空,而是它是否等于头指针L。有时对循环单链表不设头指针,而是仅设尾指针r,r->next就是头指针,这样对表尾或者表头插入元素只需要O(1)的时间复杂度。

2. 循环双链表

        由循环单链表的定义不难推出循环双链表,在循环双链表中,表头结点的prior指向表尾结点,表尾结点的next指向头结点。

2.3.5 静态链表

        静态链表是用数组来描述线性表的链式存储结构,结点也有数据域data和指针域next,这里的指针是结点在数组中的下标,也称游标。

0

2
1b6
2a1
3d-1
4
5
6c3

        静态链表结构类型的描述如下

#define MazSize 10             //静态链表的最大长度
typedef struct Node{           //结构类型的定义
    int data;                  //存储数据元素
    int next;                  //下一个元素的数组下标。
}SLinkList[MaxSize];

        静态链表以next == -1作为结束标志。静态链表的插入、删除操作与动态链表相同,只需要修改指针,而不需要移动元素。一般用于一些不支持指针的高级语言(如Basic)。

2.3.6 顺序表和链表的比较

1. 存取(读、写)方式

        顺序表支持顺序存取、随机存取,而链表只能从表头开始依次顺序存取。

2. 逻辑结构与物理结构

        顺序表中逻辑结构相邻的元素,物理结构上也相邻。链表中逻辑结构相邻的元素,物理结构上不一定相邻。

3. 查、删、插

        对于按值查找,顺序表无序时,两者的时间复杂度均为O(n);顺序表有序时,可采用折半查找,此时的时间复杂度为O(logn)。对于按序号查找,顺序表支持随机访问,时间复杂度仅为O(1),而链表的平均时间复杂度为O(n)。顺序表的插入、删除操作,平均需要移动半个表长的元素。链表的插入、删除操作,只需修改相关结点的指针域即可。

4. 空间分配

        顺序存储在静态存储分配情形下,一旦存储空间装满就不能扩充,若再加入新元素,则会出现内存溢出,因此需要预先分配足够大的存储空间。预先分配过大,可能会导致顺序表后部大量闲置:预先分配过小,又会造成溢出。动态存储分配虽然存储空间可以扩充,但需要移动大量元素,导致操作效率降低,而且若内存中没有更大块的连续存储空间,则会导致分配失败。链式存储的结点空间只在需要时申请分配,只要内存有空间就可以分配,操作灵活、高效。此外,链表的每个结点都带有指针域,因此存储密度不够大。

        总之,两种存储结构各有长短。通常较稳定的线性表选择顺序存储,而频繁进行插入删除操作的线性表(动态性较强)选择链式存储。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值