分治法——最大子列和

给定K个整数组成的序列{ N1​, N2​, ..., NK​ },“连续子列”被定义为{ Ni​, Ni+1​, ..., Nj​ },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

  • 数据1:与样例等价,测试基本正确性;
  • 数据2:102个随机整数;
  • 数据3:103个随机整数;
  • 数据4:104个随机整数;
  • 数据5:105个随机整数;

输入格式:

输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20
#include<iostream>
#include<stdio.h>
using namespace std;
int fun(int a[],int left,int right)
{
    if(left==right)
    {
        if(a[left]<0)//只有小于
            return 0;//记得return
        else
            return a[left];
    }
    int middle=(left+right)/2;
    int leftmax1=fun(a,left,middle);
    int rightmax1=fun(a,middle+1,right);
    int leftmax2=0;
    int leftnum=0;
    int rightmax2=0;
    int rightnum=0;
    for(int i=middle;i>=left;i--)//只能从中间开始
    {
        leftnum+=a[i];
        if(leftnum>leftmax2)
            leftmax2=leftnum;
    }
    for(int i=middle+1;i<=right;i++)
    {
        rightnum+=a[i];
        if(rightnum>rightmax2)
            rightmax2=rightnum;
    }
    int middlemax=leftmax2+rightmax2;
    if(leftmax1>middlemax)
    {
        if(leftmax1>rightmax1)
            return leftmax1;
        else
            return rightmax1;
    }
    else
    {
        if(middlemax>rightmax1)
            return middlemax;
        else
            return rightmax1;
    }
}
int main()
{
    int k;
    cin>>k;
    int a[k];
    for(int i=0;i<k;i++)
    {
        cin>>a[i];//i别写成k了
    }
    cout<<fun(a,0,k-1);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值