给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
- 数据1:与样例等价,测试基本正确性;
- 数据2:102个随机整数;
- 数据3:103个随机整数;
- 数据4:104个随机整数;
- 数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
用的分治
#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
int k;
cin>>k;
int a[k];
for(int i=0;i<k;i++)
{
cin>>a[i];
}
int subMax=a[0];//前面子组合的最大值
int Max=a[0];//全局最大值,别写成max,会跟函数搞混
for(int i=1;i<k;i++)
{
if(subMax>0)
{
subMax+=a[i];
}
else
{
subMax=a[i];
}
Max=max(Max,subMax);
}
cout<<Max;
}
leetcode实战——最大子序列的和(动态规划,分治法,Kadane算法)_最大子序列的和问题动态规划-CSDN博客最大子序和——动态规划算法_最大子序和动态规划-CSDN博客