动态规划——最大子列和

给定K个整数组成的序列{ N1​, N2​, ..., NK​ },“连续子列”被定义为{ Ni​, Ni+1​, ..., Nj​ },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

  • 数据1:与样例等价,测试基本正确性;
  • 数据2:102个随机整数;
  • 数据3:103个随机整数;
  • 数据4:104个随机整数;
  • 数据5:105个随机整数;

输入格式:

输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

用的分治

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
    int k;
    cin>>k;
    int a[k];
    for(int i=0;i<k;i++)
    {
        cin>>a[i];
    }
    int subMax=a[0];//前面子组合的最大值
    int Max=a[0];//全局最大值,别写成max,会跟函数搞混
    for(int i=1;i<k;i++)
    {
        if(subMax>0)
        {
            subMax+=a[i];
        }
        else
        {
            subMax=a[i];
        }
        Max=max(Max,subMax);
    }
    cout<<Max;
}

leetcode实战——最大子序列的和(动态规划,分治法,Kadane算法)_最大子序列的和问题动态规划-CSDN博客最大子序和——动态规划算法_最大子序和动态规划-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值