自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(51)
  • 收藏
  • 关注

原创 力扣刷题DAY18(解决二叉树的各种问题)

本文探讨了二叉树问题的不同遍历方法及其应用场景。对于翻转二叉树(226题),可采用递归前序或后序遍历;对称二叉树判断需使用后序遍历以收集子树信息;计算完全二叉树节点数(222题)可采用递归后序或层序遍历;平衡二叉树检测则必须使用后序遍历来获取子树高度差。文章通过具体代码示例展示了不同遍历方式(前序、中序、后序、层次)的适用条件,重点分析了中序遍历不适用于翻转二叉树的原因,以及后序遍历在处理需要子树信息的二叉树问题时的必要性。

2025-05-28 14:02:30 311

原创 力扣刷题DAY17(二叉树+层序遍历)

本文探讨了二叉树的层序遍历及其变体应用。层序遍历采用队列实现,符合广度优先搜索(BFS)逻辑,时间复杂度O(n)。具体应用包括:1.标准层序遍历(102题),逐层输出节点值;2.右视图遍历(199题),记录每层最右节点;3.最大深度计算(104题),通过递归或层序遍历实现;4.最小深度计算(111题),遇到首个叶子节点即返回。所有方法空间复杂度均为O(n),适用于不同场景下的二叉树遍历需求。

2025-05-27 15:49:15 325

原创 力扣刷题DAY16(二叉树+迭代遍历)

本文介绍了二叉树的三种遍历方法(前序、中序、后序)的非递归实现。前序遍历采用中左右的顺序,使用栈处理节点时需注意右孩子先入栈;后序遍历通过调整前序顺序(中右左)再反转结果得到左右中的顺序;中序遍历需要先处理完左子树才能访问中间节点。三种方法时间复杂度均为O(n),空间复杂度O(n)。关键注意点包括空树判断、节点访问顺序以及栈的正确使用方式。每种遍历都给出了标准C++实现代码和复杂度分析。

2025-05-24 16:31:59 473

原创 力扣刷题DAY15(二叉树+递归遍历)

本文介绍了二叉树三种递归遍历的实现方法:前序、后序和中序遍历。递归遍历的核心是确定递归函数的参数、终止条件和单层逻辑。前序遍历顺序为"中左右",后序为"左右中",中序为"左中右"。关键注意事项是传递结果容器时必须使用引用(&),否则递归过程中会复制容器导致结果丢失。三种遍历方式的时间复杂度均为O(n),空间复杂度为O(n),因为递归调用会使用系统栈空间。文中提供了每种遍历的完整C++实现代码。

2025-05-24 14:51:37 311

原创 数学基础(贝叶斯、最小二乘法)

文章摘要:本文首先介绍了贝叶斯公式,随后详细探讨了最小二乘法的几何原理。通过两点确定一条直线的方法,将方程组改写为向量形式,并讨论了误差对解的影响。文章指出,最小二乘法通过最小化误差模长来估计最大似然,并解释了优化样本点到直线距离平方和的原因。此外,文章还提到了相关系数r的概念,用于衡量线性关系的优良度,并指出r的绝对值越接近1,表示线性关系越强。最后,文章说明了即使点的数量增加,最小二乘法仍可应用于拟合直线,且相关系数r本质上是两个向量夹角的余弦。

2025-05-21 14:09:06 140

原创 力扣刷题DAY14(二叉树+递归解决各种问题)

本文介绍了四个与二叉树相关的算法问题及其解决方案。首先,二叉树的最大深度通过递归计算左右子树的深度,时间复杂度为O(n)。其次,相同二叉树通过递归比较两个树的结构和节点值,时间复杂度为O(min(n,m))。第三,对称二叉树通过递归比较左右子树的对称性,时间复杂度为O(n)。最后,平衡二叉树通过递归计算子树高度并判断是否平衡,时间复杂度为O(n)。所有算法的空间复杂度均为O(n),最坏情况下递归栈空间为O(n)。

2025-05-20 20:47:15 250

原创 力扣刷题DAY13(动态规划-状态机DP-股票交易系列)

这种表示状态之间转换关系的图,叫。完整代码。

2025-04-13 16:39:47 286

原创 库学习04——numpy

4 5 6 7]

2025-04-12 21:57:00 647

原创 力扣刷题DAY12(动态规划-区间DP)

想一想,要计算 f[i][j],必须先把 f[i+1][⋅] 算出来,那么只有 i 从大到小枚举才能做到。而对于j来说,要计算 f[i][j],必须先把 f[⋅][j-1] 算出来,那么只有 j 从小到大枚举才能做到。此外,j在i右边,所以在第二层循环的时候,j从i+1开始。跟最长公共子序列的优化很相似,要保存一些特殊的值传递到下一层循环。对于一个子序列而言,如果它是回文子序列,并且长度大于 2,那么。回文子序列本质就是:该字符串与自己的逆序串求最长公共子序列。

2025-04-12 14:43:16 908

原创 机器学习02——概要

机器学习是一门在没有明确编程的情况下让计算机学习的科学。

2025-04-09 21:45:32 182

原创 机器学习01-支持向量机(SVM)(未完)

T是倒置,训练数据是n维,omega也是n维。划分二维的是一条直线,三维的是一个平面,大于三维就称为超平面。机器学习要做什么?通过训练数据,在这个线性模型的限定下把omega和b找出来。

2025-04-09 20:32:24 320

原创 力扣刷题DAY11(动态规划-线性DP)

动态规划-线性DP

2025-04-09 18:53:14 625

原创 力扣刷题DAY10(动态规划-线性DP)

线性DP:最长公共子序列和编辑距离问题

2025-04-08 19:24:34 482

原创 力扣刷题DAY9(未完)

根据状态转移方程,可以发现多重背包问题不像是完全背包问题可以用f[i][j-v]那样可以优化,所以有了。

2025-04-05 10:14:35 178

原创 跟着StatQuest学知识08-RNN与LSTM

不使用相同的反馈环连接,通过很久以前的事情和昨天的事情进行预测。当我们循环的次数越来越多的时候,这个巨大的数字会进入某些梯度,当我们循环的次数越来越多的时候,这个非常的数字会进入某些梯度,来对明天预测,一条用于长期记忆,另一条用于短期记忆。为什么通过LSTM能解决梯度爆炸和梯度消失的问题?右边模块:将短期记忆和输入结合(权重×数值),左边模块:确定这个潜在记忆中的权重。,导致寻找最佳参数困难。,导致寻找最佳参数困难。,会出现梯度爆炸问题。,会出现梯度消失问题。

2025-03-29 14:51:47 719

原创 基于OpenCV+MediaPipe手部追踪

开源计算机视觉(Library)图像/视频的(读取、裁剪、滤波、色彩转换等)特征检测(边缘、角点等)摄像头标定、目标跟踪等负责视频流的捕获(图像格式转换(最终结果的渲染显示(cv2.imshow:由Google开发的提供预训练的(如手部关键点、人脸网格、姿态估计等)专注于实时感知任务(低延迟、移动端优化)调用模型实现输出关键点坐标,并通过mpDraw可视化。

2025-03-28 19:55:08 1539

原创 跟着StatQuest学知识07-张量与PyTorch

张量tensor与pytorch

2025-03-23 10:52:44 982

原创 跟着StatQuest学知识06-CNN进行图像分类

CNN进行图像分类

2025-03-22 15:17:02 386

原创 跟着StatQuest学知识05-交叉熵的反向传播过程

交叉熵的反向传播过程

2025-03-22 14:37:56 436

原创 跟着StatQuest学知识04-ArgMax、SoftMax和交叉熵

ArgMax、SoftMax和交叉熵

2025-03-22 13:47:50 457

原创 跟着StatQuest学知识03-反向传播

在本例中,我们使用的激活函数是softplus函数,因此代入可以得到y(1,i)和y(2,i)。

2025-03-21 21:09:17 459

原创 跟着StatQuest学知识02-链式法则与梯度下降法

跟着StatQuest学知识-链式法则

2025-03-21 16:05:12 413

原创 力扣刷题DAY8(动态规划)

动态规划

2025-03-09 19:33:05 821

原创 力扣刷题DAY7(动态规划/中等)

动态规划力扣刷题

2025-03-08 17:29:10 590

原创 力扣刷题DAY6(滑动窗口/中等+栈/简单、中等)

(用 cnt[c]-- 和 cnt[c]++ 直接调整窗口,避免窗口每次移动都重新统计字符频率。

2025-03-06 15:47:12 502

原创 力扣刷题DAY5(二分/简单+滑动窗口/中等)

二分/简单+滑动窗口/中等

2025-03-05 17:27:45 543

原创 力扣刷题DAY4(哈希表+双指针/简单)

力扣刷题DAY4(哈希表+双指针/简单)

2025-03-04 17:57:44 707

原创 力扣刷题DAY3(链表/简单)

链表/简单

2025-03-03 18:15:49 321

原创 跟着StatQuest学知识01-神经网络基本思想

跟着StatQuest学知识-神经网络基本思想

2025-03-02 19:25:51 756

原创 力扣刷题DAY2(链表/简单)

回文链表、环形链表、快乐数

2025-03-02 19:01:49 807

原创 NLP11-命名实体识别(NER)概述

NER概述

2025-03-02 17:47:36 816

原创 NLP10-TF-IDF文本向量化

TF-IDF文本向量化

2025-03-02 17:16:54 249

原创 力扣刷题DAY1(链表/简单)

相交链表和反转链表

2025-03-02 10:38:44 505

原创 数据可视化02-PCA降维

PCA降维

2025-02-28 17:12:56 588

原创 NLP09-拓展1-对比其他分类器(SVM)

SVM问句分类

2025-02-26 20:57:04 1092

原创 NLP09-朴素贝叶斯问句分类(3/3)

朴素贝叶斯问句分类实战

2025-02-26 15:40:02 1370

原创 NLP08-朴素贝叶斯问句分类之词性标注(2/3)

朴素贝叶斯问句分类之词性标注

2025-02-25 17:03:15 336

原创 NLP07-朴素贝叶斯问句分类之数据集加载(1/3)

是 遍历指定路径(source_path)下的所有文件,并。

2025-02-25 16:14:51 823

原创 库学习03-os库(持续更新)

os.walk(source_path) 会生成一个遍历器 walk,它用于循环遍历 source_path 目录及其所有子目录中的所有文件。os.path.join函数是 Python 标准库中 os 模块提供的一个非常有用的函数,用来。它的作用是将多个路径部分拼接成一个完整的路径,且能够根据不同操作系统自动使用正确的路径分隔符。os.walk() 是 Python 的一个标准库函数,用于。它会遍历指定路径(source_path)及其所有子目录,并生成一个包含。

2025-02-14 11:51:28 344

原创 数据可视化01-特征之间的关系可视化

seaborn.pairplot 函数的语法:特别适用于可视化多个特征之间的关系。

2025-02-13 21:30:23 579

NLP03-NLP的三个阶段的情感分析案例

NLP03-NLP的三个阶段的情感分析案例

2025-02-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除