TripGenie:畅游济南旅行规划助手:团队工作纪实(五)

本周,团队全力聚焦于两项核心任务,致力于夯实旅行规划助手的底层基础功能,提升数据服务的质量与效率,旨在为用户打造更为优质、精准的济南旅行规划服务体验。

一、数据库构建与数据清洗

(一)数据收集与整合

我们的首要任务是将多源数据集有条不紊地移入数据库。此前,通过爬虫技术,已成功获取济南景点及其推荐原因文件、景点坐标文件、美食文件,以及源自大众点评的住宿文件等丰富的数据资源。这些数据宛如一座蕴藏巨大价值的宝库,但在投入使用前,必须进行系统整合。在数据移入流程中,依据数据的属性和内在关联,精心设计数据库表结构。例如,创建 “景点表”,用于存储景点名称、详尽介绍、推荐缘由等核心信息;设立 “景点坐标表”,专门记录各景点精确的地理坐标,以便后续在地图上实现精准定位展示;构建 “美食表”,涵盖美食名称、所属餐厅、特色描述、地址等字段;设计 “住宿表”,囊括酒店名称、房型详情、价格区间、用户评价等关键数据。合理的表结构设计,为数据的高效存储与便捷查询筑牢了根基。

(二)数据清洗技术要点与实施

数据清洗是保障数据库质量的关键环节。鉴于数据来源于网络爬虫,不可避免地存在噪声数据、重复数据以及格式不一致等问题。为有效解决这些问题,我们运用了一系列先进的数据清洗技术。针对格式不一致的数据,编写专门的脚本程序,借助正则表达式匹配和字符串处理函数,对数据格式进行统一规范。比如,将各异格式的日期统一转换为 “YYYY - MM - DD” 的标准格式,将地址信息按照 “省 - 市 - 区 - 详细地址” 的规范进行整理。对于重复数据,采用哈希算法为每条数据记录生成唯一的哈希值,通过比对哈希值快速识别并删除重复项。在处理噪声数据时,运用数据挖掘中的异常检测算法,如基于密度的 DBSCAN 算法,自动识别并剔除那些明显不合常理的数据,诸如价格异常高或低的住宿信息、地理位置超出济南范围的景点坐标等。同时,团队成员还通过人工审核的方式,对一些难以通过算法自动识别的模糊数据进行逐一甄别,确保数据的准确性与可靠性。历经多轮数据清洗,数据库中的数据质量得以显著提升,为后续的数据分析与应用提供了清洁、可靠的数据基础。

二、实现 RAG 搭建和 POI 检索

(一)RAG 搭建技术细节

RAG(Retrieval - Augmented Generation)即检索增强生成技术,该技术能够显著提升旅行规划推荐的准确性与丰富度。在搭建 RAG 系统时,首先构建一个强大的文档检索索引。将先前存入数据库的济南景点、美食、住宿等相关信息转化为文本向量,利用向量数据库(如 FAISS)进行高效存储与索引构建。如此一来,当用户提出旅行需求时,系统能够迅速在向量空间中开展相似性检索,精准找到与用户需求相关的文本片段。随后,将检索到的文本片段作为上下文信息输入到大语言模型(如 GPT - NeoX 等)中,引导模型生成更贴合用户需求、更具针对性的旅行规划推荐内容。在此过程中,为优化 RAG 系统的性能,对检索算法进行多次调优,通过调整相似度计算的权重参数,提高检索结果与用户需求的相关性。同时,针对大语言模型生成内容的质量把控,采用强化学习中的奖励机制,依据生成内容与用户需求的匹配程度、信息丰富度等指标,对模型进行反馈训练,持续提升模型生成优质推荐内容的能力。

(二)POI 检索实现

POI(Point of Interest)检索即兴趣点检索,这对于旅行规划助手而言至关重要。为实现高效的 POI 检索,基于数据库中的景点、美食、住宿等数据,构建专门的 POI 索引。运用空间索引技术(如 R - Tree),对景点坐标、美食餐厅位置、住宿地点等地理信息进行索引构建,以便能够快速响应基于地理位置的查询请求。当用户输入特定的地理位置和查询半径时,系统能够迅速在索引中定位到符合条件的 POI 信息,并按照距离远近、用户评价等因素进行排序返回。例如,当用户在济南市区某位置查询附近的美食时,系统能够在毫秒级时间内检索出周边符合条件的餐厅信息,并依据评分高低、距离远近等因素为用户提供有序的推荐列表。此外,为提升 POI 检索的灵活性,还支持多种查询方式,如关键词查询(可依据美食名称、景点特色等关键词进行检索)、类别查询(可按景点类型、美食菜系等类别进行筛选),以满足用户多样化的查询需求。

本周,凭借团队成员的协同合作,在数据库构建、数据清洗以及 RAG 搭建和 POI 检索实现等方面取得了显著进展。这些成果为 TripGenie 旅行规划助手的功能完善和用户体验提升奠定了坚实基础。未来,我们将持续奋进,不断优化和拓展产品功能,致力于为用户打造更为卓越的济南旅行规划服务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值