自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 「n8n 2.x + Task Runners + 原生 Python」自托管完整部署示例

本文介绍了n8n 2.x版本中Python代码节点的自托管部署方案。通过Docker Compose配置n8n主服务和TaskRunner分离架构,实现原生Python执行环境。文章详细说明了部署步骤,包括.env文件配置、docker-compose.yml编写、验证方法及常见问题排查。重点强调了Python代码节点的使用规则(支持标准库但默认不带第三方库)、如何通过自定义Runner镜像安装第三方库,以及不同场景下的适用性建议:轻量级数据处理适合直接使用Python节点,而复杂AI/批处理任务建议采用独

2026-01-03 11:56:54 522

原创 ✅ 测试数据体系:如何用 Set 节点和 Mock 数据做可复现测试

摘要: 企业级自动化测试需要建立可复现的测试数据体系,而n8n中的Set节点可作为Mock数据源的核心组件。测试数据应分层设计,包括基础Mock层、业务场景层和异常边界层,确保结构正确、覆盖真实业务场景和异常情况。通过Set节点结合ItemLists和SplitInBatches,可实现批量测试和回归验证。测试数据应独立版本化管理,并与CI集成,通过标准化返回结果实现自动化回归测试。这套体系能显著提升自动化流程的可靠性和工程可信度,从手动调试进阶为系统化测试能力。

2025-12-07 10:59:30 667

原创 数据契约与 Schema 验证在 n8n 中的落地方案|从入口校验到异常治理的企业级实践

企业级自动化系统中,80%的故障源于数据问题而非节点问题。数据契约(Schema)作为数据流转的防洪闸门,通过定义字段要求、类型、空值规则等约束条件,确保数据质量。在n8n中可通过三种方式实现:JSON Schema(标准化校验)、Node级逻辑(轻量校验)和数据库Schema(物理约束)。典型实施采用三段式治理模型:入口校验、流程中校验和落库终检,并配套分级异常处理策略。特别在RAG场景中,Schema能有效避免输入异常导致的AI错误输出。完善的数据契约体系是企业级自动化系统稳定运行的基础,标志着从工具使

2025-12-07 10:52:10 608

原创 《Code 节点实战:用 JavaScript 接管自动化系统的核心逻辑(企业级实战)》

摘要:本文深入解析n8n自动化系统中Code节点的企业级应用,将其定位为系统的"CPU+操作系统"。文章详细阐述了Code节点的核心功能:执行JavaScript进行无限制数据处理,适用于业务规则计算、风控判断、AI Prompt组装等复杂场景。重点介绍了输入数据结构、输出规则、能力边界等API级运行机制,并提供了5种典型实战模型(业务计算、风控拦截、AI Prompt构造等)。同时强调了8条最佳实践和6个常见陷阱,帮助开发者掌握企业级自动化系统的核心逻辑处理能力,实现从工具使用到系统构

2025-12-06 14:17:09 840

原创 n8n节点 标签:Set | 类型:数据构造 / 字段编辑 / Mock 调试

摘要: Set节点是n8n中关键的数据构造与调试工具,能解决90%的数据格式问题。核心功能包括: 数据构造:支持手动(Mock)或表达式(生产)模式创建标准化字段; 字段操作:重命名、裁剪、重组数据,适配下游节点需求; 调试中枢:通过KeepOnlySet防止数据污染,用点号语法整合对象。 企业实践: 拆分Mock与生产Set,统一命名风格(如小写下划线); 子流程入口必设标准入参; 提供可直接导入的DemoJSON模板。 避坑指南:避免用Set做逻辑判断、保留测试数据或混杂过多字段。掌握Set节点可显著提

2025-12-06 13:38:48 783

原创 n8n 企业级自动化 · 专栏完整目录树(50+ 节点级规划)

本专栏提供从自动化新手到企业级架构师的系统化成长路线,覆盖n8n工作流开发的6大核心模块:数据处理基础、条件控制逻辑、触发器体系、外部系统对接、架构级节点应用及AI自动化专题。内容由浅入深,包含300+实战技巧,重点培养10项企业级交付能力(如幂等设计、监控埋点等)。特色在于每课配有可落地的标准资产包(n8nJSON、测试数据、架构图等),并特别设置AI自动化专题,详解RAG全链路实现、向量库选型等前沿实践。适合希望系统掌握n8n并构建企业级自动化能力的开发者。

2025-12-06 12:18:47 554

原创 n8n + AI 自动化系统 — 整体技术架构图(文字版)

n8n+AI自动化系统技术架构摘要:系统采用分层设计,包含触发层(Webhook/Cron)、编排层(n8n工作流)、数据处理层(ETL)、AI层(模型/RAG)、向量知识库、外部系统对接层及运维监控层。架构特点:1)模块化设计,支持工作流复用;2)工程化能力,包含审计日志、错误重试机制;3)安全合规,实现数据脱敏和访问控制;4)混合部署方案,支持从PoC到生产环境平滑过渡。实施建议分四阶段推进,重点解决幂等性设计、成本监控和向量库更新等关键问题。

2025-12-06 09:16:27 642

原创 ✅Error Trigger(全局异常捕获)——n8n 错误自动告警与容错体系实战(含 Demo JSON + 测试数据)

摘要: n8n的ErrorTrigger节点是自动化系统的全局异常监听器,专门捕获工作流错误并触发告警。核心功能包括:AI调用失败告警、HTTP接口报错记录、定时任务失败通知等。该节点独立运行,自动注入错误信息(如执行ID、堆栈、时间戳),需搭配格式化节点和多重告警通道(如飞书+邮件)。典型实践包括子流程容错、自动重试及错误日报生成。注意避免将ErrorTrigger误置主流程或未激活等常见错误。关键结论:ErrorTrigger是自动化系统的"安全气囊",缺失会导致系统在失控状态下盲跑

2025-12-06 05:23:00 674

原创 ✅ n8n Cron Node(定时任务)超详细教程:让你的工作流真正“自动跑起来”

本文详细介绍了n8n中的CronNode定时任务节点,帮助实现工作流自动化。主要内容包括:CronNode概念解析,常见应用场景如数据同步、AI内容生成等,三种定时模式配置详解,标准工作流结构建议。提供了可直接导入的JSON示例和测试数据,并总结了7个最佳实践和常见踩坑点,如时区设置、高频任务处理等。通过本文可掌握n8n定时任务的完整使用方法,实现真正的自动化业务流程。

2025-12-05 14:33:50 872

原创 ✔ Loop / Loop Over Items 节点

n8n中的Loop和LoopOverItems节点是自动化流程的关键循环控制器。Loop用于流程级别的重复执行(如重试、状态检查),而LoopOverItems则用于逐条处理列表数据(如批量邮件、Excel处理)。核心区别在于:Loop控制流程,LoopOverItems处理数据。使用时需注意并发限制、大数据量分页等问题。典型应用场景包括Notion数据处理、批量AI文案生成等。掌握这两个节点能显著提升自动化能力,让工作流高效处理批量任务。

2025-12-03 08:01:32 313

原创 《n8n Item Lists 节点:数组操作全攻略(排序、过滤、分组、去重、合并)》

摘要:本文详细介绍了n8n中的ItemLists节点,作为数组处理的强大工具,它支持过滤、排序、去重、聚合等常见操作,无需编写代码即可完成数据预处理。文章重点讲解了Filter、Sort、Aggregate、Unique和Limit五种最常用的操作模式,并提供了测试数据和实际应用场景示例,包括CRM数据处理、API分页合并等。同时分享了最佳实践和常见错误规避方法,强调该节点在数据清洗中的核心地位,能显著减少对Code节点的依赖。文末还提供了可直接导入的完整Workflow JSON示例。

2025-12-03 07:58:56 451

原创 n8n Function Node vs Code Node:到底有什么区别?选哪个?(超详细对比)

n8n中FunctionNode与CodeNode核心区别在于数据处理方式:CodeNode(原FunctionItem)默认逐条处理单个数据项,适合格式化、单条数据操作;FunctionNode批量处理所有数据,适合聚合、统计等批量操作。官方已将FunctionItem统一为CodeNode,但旧教程可能仍使用旧称。关键差异:CodeNode自动逐条执行,FunctionNode需手动循环处理。最佳实践:单条逻辑用CodeNode,批量操作用FunctionNode,复杂操作可分步处理。注意始终返回ite

2025-12-03 07:56:48 653

原创 n8n Code Node(最重要的节点)超详细教程(含实战示例 + JSON 工作流 + 测试数据)

n8n的Code节点是一个功能强大的JavaScript处理节点,允许用户通过编写代码实现灵活的数据操作。本教程详细介绍了Code节点的核心功能和使用场景,包括数据格式化、循环处理、分组聚合和复杂判断等常见需求。文章提供了基础结构说明、典型示例代码、流程图解以及可直接导入的JSON工作流示例,同时总结了最佳实践和常见错误。通过掌握Code节点,用户可以在n8n中实现各种复杂的数据处理逻辑,弥补其他节点的功能限制,充分发挥工作流的灵活性。

2025-12-03 07:54:45 841

原创 《n8n Webhook 节点最强教程:入门到生产级的完整实战(含流程图 / Demo JSON / 测试数据)》

摘要: Webhook节点是n8n的核心功能,允许外部系统通过HTTP请求触发自动化流程,实现被动触发式集成。其核心价值在于无需轮询,支持GET/POST请求,可接收JSON/Query/Headers数据,适用于支付回调、表单提交、API对接等场景。关键配置包括HTTP方法、路径、响应模式(如即时响应或返回JSON),需注意生产环境URL与测试URL的区别。最佳实践强调安全校验(Token/签名)、快速响应及并发处理优化。常见问题包括测试URL失效、响应超时和Headers大小写敏感问题。通过合理设计,W

2025-12-03 07:51:32 765

原创 n8n IF 节点最全教程:条件判断、分支逻辑、一文搞定(含 Demo JSON)

摘要:本文全面介绍n8n工作流中的IF节点使用,包含条件判断、分支逻辑等核心功能。详细讲解IF节点的应用场景(用户筛选、API过滤、AI分支等)、配置方法(左值/操作符/右值)及实际案例(高价值用户筛选)。提供完整DemoJSON可直接导入复用,并总结最佳实践和常见问题解决方案(类型转换、多条件处理等)。通过本教程可快速掌握n8n中最基础且强大的控制节点,实现各种自动化场景的条件判断逻辑。(149字)

2025-12-02 06:26:54 844

原创 n8n 节点教程 | Switch Node(条件分支)最全指南

本文详细介绍了n8n工作流中的SwitchNode(条件分支节点)使用方法。作为n8n的核心路由节点,SwitchNode支持三种比较模式(值比较、表达式、字符串匹配),可根据不同条件将数据分流到不同路径。文章包含概念讲解、典型应用场景(如CRM分级、AI内容路由)、流程图示例、测试数据和完整JSON配置模板,并总结了常见配置技巧和注意事项(如多字段判断、区间逻辑处理)。特别对比了SwitchNode与IFNode的区别,指出SwitchNode更适合多分支场景。最后强调了该节点在构建智能分流系统、自动化链

2025-12-02 06:22:01 894

原创 n8n 节点教程 | Set Node(设置节点)最全指南(含 JSON Demo + 常见用法)

Set Node 是 n8n 的“瑞士军刀”,虽然简单,但几乎在每一个工作流中出现。它的优势:无需写代码强大的表达式支持快速处理结构化数据用来清洗接口数据非常高效掌握 Set Node = 你能写出 80% 自动化的核心能力。

2025-12-02 06:18:34 567

原创 n8n 节点教程 | Function Node(函数节点)最强指南(含 JSON Demo & 实战场景)

n8n的FunctionNode(函数节点)教程指南:该节点通过JavaScript代码实现灵活数据处理,适用于数据格式化、条件判断、API响应加工等场景。文章提供节点功能说明、典型应用案例、参数配置详解,并包含可直接导入的JSON示例(如计算税收的Demo)。特别介绍了CRM数据清洗的实战案例,展示如何转换字段格式和拆分数组。最后解答了常见问题,强调该节点作为n8n"逻辑大脑"的重要性,是高级用户必备工具。全文采用教程+代码片段+实战演示的方式,适合开发者学习使用。

2025-12-02 06:16:07 934

原创 n8n「Wait 节点 + Sub-Workflow 子工作流」超全教程(含流程图 + Demo)

本文详细介绍了n8n自动化平台中Wait节点和Sub-Workflow子工作流的使用方法。Wait节点提供4种延迟执行模式:固定时间、相对时间延迟、等待Webhook回调和等待事件触发。Sub-Workflow可将重复逻辑模块化,支持主动调用和Webhook被动触发两种方式。文章包含客户自动跟进的完整案例,展示了如何组合使用Wait和Sub-Workflow实现定时消息推送,并提供了流程图、测试数据和可直接导入的JSON示例。最后总结了最佳实践,建议合理使用Wait避免卡顿,保持子流程标准化,实现高效自动化

2025-12-02 05:56:40 898

原创 n8n Merge 节点完整教程(含流程图 + Demo 数据 + 工作流)

n8n Merge节点完整教程:数据整合利器 本教程详解n8n中Merge节点的四种数据合并模式: MergeByKey(按字段匹配) Append(数组追加) KeepKeyMatches(保留交集) Multiplex(笛卡尔积) 教程包含: ✅ 可视化流程图解 ✅ 四种模式详细说明 ✅ 实战示例(用户+订单数据合并) ✅ 可导入的Demo工作流JSON ✅ 常见问题解决方案 适用场景: • 多API数据融合 • CRM系统整合 • 电商订单与用户信息合并 • 会员数据补全 通过Merge节点,可以实现

2025-11-30 08:37:53 508

原创 Windows 11 24H2 图形化安装 Docker Desktop(自定义安装路径到 D 盘)

【摘要】本文详细介绍在Windows 11 24H2系统中图形化安装Docker Desktop到D盘的方法。重点包括:1)启用虚拟化等系统功能;2)安装配置WSL2;3)通过自定义安装路径(D:\setupTools\docker)完成安装;4)验证及常见问题处理。还提供可选配置将Docker数据迁移至D盘,避免占用C盘空间。完整流程耗时约10分钟,适配最新Win11系统,实现程序与数据分离存储。(148字)

2025-10-17 16:53:44 678

原创 PaddleOCR 本地部署与 MCP 服务调用指南(Mac Intel CPU)

本文介绍了在MacIntelCPU上使用Python3.10部署PaddleOCR本地OCR服务的完整流程。主要内容包括:1)通过Conda或venv创建Python3.10环境;2)安装PaddleOCR相关依赖;3)搭建FastAPI服务端实现OCR识别;4)提供CherryStudio调用示例。文章特别强调了Python版本管理、环境隔离等注意事项,帮助开发者快速构建本地OCR服务,并通过MCP实现图片文字识别功能。

2025-09-23 13:39:05 839

原创 Mac Intel + Python3.10 部署 PaddleOCR,并用 CherryStudio (MCP) 调用图片识别

📝 摘要 本文详细介绍了在MacIntel设备上基于CPU部署PaddleOCR的完整流程。从Python 3.10环境配置、PaddleOCR安装与模型测试,到封装FastAPI服务并通过CherryStudio的MCP接口调用,实现了本地图片文字识别的闭环方案。关键步骤包括:虚拟环境隔离、CPU版PaddlePaddle适配、MCP服务封装及性能优化(实测Intel i5机型识别耗时0.85秒)。文章还提供了版本冲突解决、多项目依赖管理等实用技巧,并展望了批量处理、多语言扩展等进阶方向。适用于需要安全

2025-09-23 12:08:08 1417

原创 在 Windows 11 + RTX 5090 环境下本地部署 Qwen2.5-VL-14B 并联动 Dify 实现发票识别与检索

本文介绍在Windows11+RTX5090环境下本地部署Qwen2.5-VL-14B多模态大模型,并与Dify平台联动实现自动化发票处理。关键点包括:1)硬件配置满足FP16推理需求(20-24GB显存);2)模型支持高精度OCR、结构化信息提取和自然语言问答;3)通过Ollama部署API服务,与Dify集成构建工作流;4)实现发票识别、数据提取、知识库存储和智能查询功能。方案优势在于本地化部署保障数据安全、端到端多模态处理能力,以及可扩展至其他财务文档自动化场景。

2025-09-22 17:29:00 1437

原创 Windows 安装 Docker Desktop 到 D 盘完整教程(含新版迁移方案)

Docker Desktop迁移到D盘简明指南(≤150字) 适用于Windows 10/11+WSL2环境,分两种场景: 1️⃣首次安装: 静默安装命令指定D盘路径,自动创建虚拟磁盘 2️⃣已安装迁移: 导出docker-desktop数据→注销旧分发→导入D盘 💡新版无需迁移docker-desktop-data 📌提供一键脚本自动完成安装/迁移 ✅验证:docker ps正常显示即成功 优势:节省C盘空间,提升性能稳定性

2025-09-20 17:25:01 2077 3

原创 Windows 快速检测 Docker / WSL2 安装环境脚本(附 GUI 版本)

【摘要】本文介绍了一个Windows环境检测脚本,可快速判断电脑是否满足Docker Desktop/WSL2安装要求。脚本通过PowerShell自动检测6项关键指标:64位系统架构、CPU虚拟化支持、Windows版本≥1903、内存≥4GB、磁盘空间≥20GB以及Hyper-V/WSL功能状态,并以✅/❌直观显示结果。提供命令行和GUI两种版本,后者可直接弹窗显示检测结果。还支持打包成EXE文件,方便非技术人员使用。该工具可帮助工程师快速评估客户环境,节省部署前的准备工作时间。

2025-09-20 17:15:32 560

原创 Windows 系统 YOLOv8 部署教程(Win10 / Win11,CPU & GPU,D 盘安装版)

📝【Windows系统YOLOv8部署指南】 本教程提供Windows10/11系统下YOLOv8的D盘部署方案(支持CPU/GPU): 1️⃣ 环境准备:需Python3.9+、Anaconda;GPU用户需NVIDIA驱动及CUDA11.x 2️⃣ 一键脚本:自动创建D:\yolo目录,下载模型(yolov8n.pt)和测试图片(bus.jpg) 3️⃣ 智能检测:自动识别GPU并安装对应PyTorch版本(CUDA或CPU版) 4️⃣ 验证部署:执行推理后,结果保存在D:\yolo\runs\pre

2025-09-10 14:12:36 663

原创 Ubuntu 系统 YOLOv8 部署教程(GPU & CPU 一键安装)

本文提供了在Ubuntu系统(20.04/22.04)部署YOLOv8的完整教程,支持GPU(需NVIDIA驱动+CUDA11.8)和CPU两种环境。教程包含一键安装脚本(deploy-yolov8-ubuntu.sh),自动检测硬件并安装对应依赖(GPU版PyTorch或CPU版)。步骤包括:1)环境准备;2)下载YOLOv8模型和测试图片;3)创建Conda环境并安装依赖;4)验证部署结果。脚本自动处理目录创建、依赖安装和推理验证,结果保存在runs/predict目录。GPU版本显著提升推理速度,适合

2025-09-10 14:08:55 943 1

原创 Mac M 系列芯片 YOLOv8 部署教程(CPU/Metal 后端一键安装)

本文详细介绍了在Mac M系列芯片(ARM架构)上部署YOLOv8模型的完整流程。主要内容包括:1)环境准备(ARM原生Python、Miniconda);2)手动下载模型和测试图片;3)提供一键部署脚本自动完成环境配置和验证;4)说明Metal后端加速CPU推理的优势;5)部署流程图和关键步骤说明。部署过程无需CUDA,通过ARM原生PyTorch和Metal后端即可实现高效推理,适合团队快速使用。执行脚本后,检测结果将保存在runs/predict目录中。

2025-09-10 14:06:47 776

原创 YOLOv8 Linux 部署指南(GPU & CPU 完整版)

本文提供了YOLOv8在Linux系统下的CPU和GPU一键部署方案。部署流程包括:创建目录、下载模型和测试图片、建立conda环境、安装PyTorch(GPU版需CUDA11.8)和YOLOv8依赖包。GPU版本显著提升推理速度,适合大批量处理,而CPU版本适用于无显卡环境。提供两个自动化脚本(deploy-yolov8-linux-*.sh)分别处理不同硬件配置,自动完成环境搭建和安装验证。部署成功后可在runs/predict目录查看检测结果,适用于不同性能需求的计算机视觉项目。

2025-09-10 13:49:32 826

原创 YOLOv8 mac-intel芯片 部署指南

本文介绍了在Mac(Intel芯片)上使用Conda虚拟环境(Python3.9)部署YOLOv8目标检测模型的完整流程。主要内容包括:创建Conda环境并安装依赖、手动下载模型文件避免GitHub超时、配置Jupyter Notebook和PyCharm开发环境、验证环境是否正常运行。通过分步指导,帮助用户快速在两种开发工具中完成YOLOv8的部署,特别针对国内网络问题提供了手动下载模型的解决方案,确保模型能顺利加载和运行。

2025-09-10 12:31:06 1291

原创 Notion基础使用指南与模板导入方法(附周边工具推荐)

📝Notion新手入门指南(150字版) 本文介绍Notion基础使用方法:1)注册登录后,左侧为工作区/页面列表,中间编辑区支持拖拽模块;2)通过"Duplicate"按钮可复制他人分享的模板(如任务管理、学习笔记);3)推荐结合AI工具Dify实现内容智能处理,或用n8n/Zapier实现Notion与其他应用的自动化联动。新手可从每日计划、习惯追踪等免费模板开始体验,逐步打造个性化效率系统。 🔗核心操作:复制模板→修改内容→集成工具 🛠️周边推荐:Dify(AI处理)、n8n

2025-09-07 11:30:14 6044

原创 YOLOv8 在 Intel Mac 上的 Anaconda 一键安装教程

通过本文的一键安装脚本 + 常见问题解决方案,你可以在Intel Mac上快速搭建 YOLOv8 环境,支持:✅ 终端推理✅ Notebook 可视化✅ 自定义训练与测试。

2025-09-06 18:12:42 535

原创 Mac Intel 芯片 Docker 一键部署 Neo4j 最新版本教程

本文介绍了如何在Mac Intel 芯片上通过Docker 一键部署 Neo4j 最新版本,并提供了:📝 一键管理脚本(启动/停止/重启/删除/状态)⚡ 数据持久化和端口配置方法🐍 Python 驱动示例代码这样你就可以快速上手 Neo4j,在本地构建自己的图数据库应用🚀。知识图谱、推荐系统、社交分析等。

2025-09-06 18:02:12 1272

原创 YOLO 模型发展与应用场景推荐大全(含 YOLOv12 最新进展 + 系统配置要求)

YOLO(You Only Look Once)是一类主流目标检测算法,从 2016 年的 YOLOv1 发展至今,已经成为实时目标检测的事实标准。速度快:单次前向传播即可完成检测。精度高:不断优化 backbone、neck、head 结构。应用广:交通、安防、医疗、农业、工业等。历代发展:YOLOv3 → 跨入大规模工业应用YOLOv5 → 社区最流行版本,生态成熟YOLOv8 → 多任务(检测、分割、姿态)全能模型YOLOv11 → 小目标检测和推理速度表现优异。

2025-09-05 23:42:31 2290

原创 YOLO 大模型应用场景推荐与配置要求全解

YOLO系列目标检测模型从v1发展至v12,具备端到端检测、轻量化部署和多任务拓展优势。根据应用场景推荐不同版本:自动驾驶/安防用v11/v12,工业质检/医疗用v8/v12,无人机用YOLO-Drone,零售/机器人用v8/v11。环境配置方面,Windows/Linux需NVIDIA显卡,Mac(M1/M2/M3)支持Metal加速,Intel芯片Mac需轻量模型或外接GPU。科研推荐v5/v8,工业应用选v11/v12,Linux+NVIDIA为最佳部署方案。

2025-09-05 23:38:15 744

原创 Mac Intel 芯片部署 YOLO(Docker 方式,支持离线打包与 Compose 管理)

本文详细介绍在MacIntel芯片上使用Docker部署YOLO的方法,内容包括:1)拉取官方镜像;2)镜像打包导出支持离线使用;3)提供一键脚本简化操作;4)使用Docker-Compose实现长期运行管理。文章还包含环境准备、镜像导入、测试运行等完整步骤,并针对常见问题(下载慢、CPU加速、数据挂载等)提供解决方案,帮助用户轻松实现YOLO在不同环境中的快速部署与管理。

2025-09-05 14:59:57 1202

原创 DeepSeek-R1 蒸馏版模型离线安装与运行教程(Windows + D盘)

【摘要】本文详细介绍了如何在Windows系统的D盘环境下离线安装并运行DeepSeek-R1推理优化模型。主要内容包括:1)模型系列介绍(大模型版/蒸馏版/量化版);2)Ollama安装及路径配置方法;3)GGUF模型文件存放与Modelfile创建步骤;4)模型导入及交互式对话启动流程;5)常用模型管理命令。特别提供了百度网盘下载模板,方便用户获取DeepSeek-R1-Distill-Qwen-7B-Q4_K_M量化模型文件(需自行替换真实链接)。该方案适合网络不稳定或需要特定量化版本的用户,实现了完

2025-09-04 15:20:32 1136

原创 DeepSeek-R1 模型全解析与本地安装运行指南(Windows+D盘)

本文全面解析国产DeepSeek-R1大模型并提供Windows安装指南。DeepSeek-R1分为三个版本:完全强化学习的Zero版、平衡性能的大模型版和轻量化蒸馏版,参数量从1.5B到671B不等。文章详细介绍了在Windows系统下将Ollama安装到D盘的方法,包括修改模型存储路径的关键命令。同时总结了Ollama的常用模型管理命令,如pull拉取模型、run运行模型、list查看模型等。推荐普通PC用户使用7B或14B版本,高配设备可尝试更大模型。通过简单命令即可实现本地部署,方便开发者体验这一强

2025-09-04 13:47:16 890

原创 Dify 平滑升级指南(源码拉取 + Docker 构建)

本文提供了Dify系统的平滑升级指南,适用于通过源码部署且使用Docker Compose的macOS用户。升级步骤包括:1)停止旧容器(保留数据卷);2)拉取最新源码;3)检查.env配置文件;4)构建最新镜像;5)启动服务。文章还提供了一键升级脚本,并强调注意事项:保留.env文件、不删除数据卷、建议提前备份。该方法能实现无数据丢失的平滑升级,脚本可提高升级效率。

2025-09-03 20:48:22 709 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除