- 博客(191)
- 收藏
- 关注
原创 通过 MCP 实现 AI Agent 目前有哪些最佳实践?
通过(Model Context Protocol)实现AI Agent的最佳实践,目前已在工具集成、框架设计、开发模式等方面形成了多种创新方案。
2025-05-18 23:58:10
690
原创 蓝耘元生代引领AI开发新潮流:DeepSeek R1V3满血版亮相,开启高效应用新时代
蓝耘元生代推理引擎的推出,标志着AI应用开发进入了一个新的时代。从简易的大模型调用到智能客服系统的搭建,再到模型微调的定制化操作,蓝耘元生代为开发者提供了前所未有的便利和高效。而DeepSeek R1/V3满血版则进一步提升了平台的性能,满足了不同开发者和企业用户对更高性能AI服务的需求。如果你正在寻找一个强大且易用的AI开发平台,蓝耘元生代无疑是你不可错过的选择。立即注册,体验500万免费tokens~蓝耘元生代平台;IDE代码实现多问多答;chatbox。
2025-05-18 23:53:58
444
原创 端到端自动驾驶大模型:视觉-语言-动作模型 VLA
随着Nerf、3DGS技术的发展,感知道路结构的技术逐渐成熟,这减少了对百度、高德等高清地图的依赖,即使在普通导航地图区域也能感知标准的道路结构,大大提升了自动驾驶系统实用性。目标、障碍物检测和道路结构感知逐渐统一,但决策规划仍以Rule-based为主,导致算法迭代需要大量人力,代码复杂且泛化能力有限。随着Tesla FSD v13版本的发布,基于强化学习的决策规划算法有潜力超越经过大量人力资源精心打磨的规则式算法,而且感知和规划可以融合为一个AI模型,即端到端自动驾驶大模型。
2025-05-18 23:49:03
601
原创 深度拆解:AI Agent发展演练·数字挑战
前引:“”从英语翻译过来就是代理、中介的意思,它描述了一种拥有欲望、信念、意图以及采取行动能力的载体。在计算机科学与人工智能领域中,“Agent”又是如何的呢?下面跟着我一起来看看吧!
2025-05-18 23:44:27
306
原创 挑战用AI替代我的工作——从抢券困境到技术突破
经过一系列的尝试和优化,最终,我成功利用AI影刀脚本抢到了心仪的券,并顺利找到了拼单的伙伴。这一过程不仅让我感受到了技术的力量,也让我深刻认识到,合理利用AI工具能够为我们解决实际问题提供强大的支持。明确需求:在使用自动化工具之前,需要清楚地了解自己的需求,例如抢券时所需的点击速度、持续时间和目标位置。选择合适的工具:不同的自动化工具具有不同的功能和优势,要根据具体需求选择最适合的工具。影刀的AI功能为连点器的实现提供了强大的支持。不断优化。
2025-05-18 23:40:50
550
原创 如何提升大模型的智能水平?
随着人工智能技术的飞速发展,大模型在多个领域展现出了前所未有的能力,但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。那么,如何让大模型变得更聪明呢?以下从算法创新、数据质量与多样性、模型架构优化等方向进行详细阐述。
2025-05-18 23:24:22
603
原创 大模型综述来了!一文带你理清全球AI巨头的大模型进化史
大模型必然是未来很长一段时间我们工作生活的一部分,而对于这样一个与我们生活高度同频互动的“大家伙”,除了性能、效率、成本等问题外,大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重,机器幻觉是大模型目前还没有极佳解决方案的主要问题,大模型输出的有偏差或有害的幻觉将会对使用者造成严重后果。同时,随着 LLMs 的“公信度”越来越高,用户可能会过度依赖 LLMs 并相信它们能够提供准确的信息,这点可以预见的趋势增加了大模型的安全风险。除了误导性信息外,
2025-05-18 23:20:35
545
原创 大模型的几个关键认识——成本、网络效应、用户、竞争、基准、产品
随着大模型从技术竞赛阶段逐渐过渡到应用普及阶段,对于供给侧而言,抢占用户和规模化推广成为未来在大模型市场中占据一席之地的必经之路。而对于需求侧来说,在各家基础大模型能力和体验差异不大的前提下,投入产出比与大模型推广息息相关。在这一背景下,在GPT-4o的发布会后,国内基础大模型厂商纷纷开始降价,第一轮价格战拉开帷幕。这种现象类似于云计算领域的竞争,亚马逊云自诞生以来已降价超过100次,不断降低用户使用云计算的成本,这也是云计算渗透率不断提升的关键。
2025-05-18 23:16:00
783
原创 大模型学习路线
LLMs更新至今,算是告一段落了。博主从零到一学习两月有余成功上岸心仪的LLMs、MLLMs算法岗。为工作、科研和职规需要,后续仍会保持AI全栈式的自我迭代。计划预跟进方向:NLP & MLLMs& CV,敬请期待…GPU:本地GPU,google的colab,kaggle的notebook,百度的飞桨平台,AutoDL的云端租赁。需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取。
2025-05-18 23:11:13
793
原创 多模态大模型:技术原理与实战 基于人工反馈的强化学习
近年来,随着互联网和移动设备的普及,多模态数据(如文本、图像、视频、音频等)呈爆炸式增长。如何有效地处理和理解这些多模态数据成为了人工智能领域的一个重要挑战。传统的单模态模型(如自然语言处理模型或计算机视觉模型)在处理多模态数据时往往会遇到瓶颈,难以充分利用不同模态之间的互补信息。MLLMs可以用于生成视频的摘要。例如,给定一段关于猫的视频,MLLM可以生成摘要 “这只猫很可爱,它喜欢玩玩具”。随着计算能力的提升,MLLMs的规模将会越来越大,从而学习到更丰富的语义表示。
2025-05-18 23:06:44
589
原创 解读大模型的微调
在快速发展的人工智能领域中,有效地利用大型语言模型(LLM)变得越来越重要。然而,有许多不同的方式可以使用大型语言模型,这可能会让我们感到困惑。实际上,可以使用预训练的大型语言模型进行新任务的上下文学习并进行微调。那么,什么是上下文学习?又如何对大模型进行微调呢?
2025-05-16 21:31:32
561
原创 深度解读:智能体2.0 AI Agent多推演进
Prompt模式就是把大模型当做工具来调用。大模型最初兴起时,Prompt工程把大模型当成一种编程语言来看待。人们通过描述角色技能、任务关键词、任务目标以及背景,来让大模型生成对应的文本格式Prompt工程的万能公式:角色+角色技能+任务核心关键词+任务目标+任务背景+任务范围+任务解决与否判定+任务条件+输出格式/输出数量。
2025-05-16 21:22:34
968
原创 快手可图大模型Kolors全面开源——一个更懂中文的文生图大模型
这一系列开源项目的产生,将为开发者提供更加全面和多样化的工具和资源,进一步丰富文生图领域的开源生态,为探索更多的应用场景和技术创新提供便利,共同推动文生图技术的进步和普及。如图2所示,面对DALL-E 3的经典提示文本,使用GLM的模型能够正确绘制多主体(如小贩和女子),并且画面中包含了所有元素(如满月、电话等)。从图7中可以看出,可图(Kolors)在综合满意度达到Midjourney-v6水平,特别在图像质量上,可图(Kolors)对比目前开源和闭源模型优势显著,这与智源的评估结果一致。
2025-05-16 21:12:42
931
原创 实战解析MCP-使用本地的Qwen-2.5模型-AI协议的未来?
近年来,随着大语言模型(LLM)在各类应用中的广泛使用,我们逐渐意识到:仅靠单一模型的能力,很难满足实际应用中对数据、工具、环境等多样化需求的不断增长。就在这种背景下,Anthropic 推出的模型上下文协议(Model Context Protocol,简称 MCP)悄然登场,它被誉为“为 AI 装上 USB-C 接口”的革命性标准,为 AI 工具整合带来了全新的思路。本文将深入探讨 MCP 是什么、为什么要使用 MCP,以及 MCP 与 LangChain 等其他技术的核心区别和应用前景。
2025-05-16 21:06:58
797
原创 大模型(LLMs)RAG 版面分析——表格识别方法篇
表格识别包括表格检测和表格结构识别两个子任务。表格定位(Table Localization):此阶段涉及识别并划定表格的整体边界,采用的技术手段包括但不限于目标检测算法,如YOLO、Faster RCNN或Mask RCNN,甚至有时借助生成对抗网络(GAN)来精确勾勒出表格的外在轮廓。本文介绍了大模型(LLMs)RAG 版面分析中的表格识别方法。首先,阐述了表格识别的重要性及其面临的挑战。接着,详细介绍了表格识别任务的两个子任务:表格检测和表格结构识别。
2025-05-16 20:59:50
862
原创 大模型的模型参数为什么这么多
随着参数数量的增加,模型能够学习到更为细致和深层次的特征表示,这对于处理复杂的自然语言、图像识别、音频处理、甚至是跨领域的多模态数据尤为重要。总之,大模型参数的增多是为了增强模型对复杂数据的表征能力和泛化能力,尤其是在现代深度学习和大规模数据环境下,这是提高模型性能和解决复杂任务的关键途径之一。: 尽管增加参数可能会带来过拟合的风险,但如果配合恰当的正则化技术(如权重衰减、Dropout、早停等)和足够大的训练数据集,大模型可以展现出更强的泛化能力,即在未见过的数据上表现良好。
2025-05-16 20:55:22
188
原创 大模型与知识图谱:联合打造智能未来,案例解析让你大开眼界!
最后,结合大模型的推理能力,对找到的知识进行整合和推理,生成准确、详细的答案。能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。现在,有了大模型和知识图谱的结合,智能问答系统能够为你提供更加精准、详细的答案。例如,当你询问某个历史人物的事迹时,系统不仅能够给出基本的生平介绍,还能够结合知识图谱中的时间线、事件关系等信息,为你呈现一个完整的历史脉络。
2025-05-16 20:45:56
894
原创 多模态大模型初探索:通过ollama部署多模态大模型
今天和同事聊天,聊到多模态大模型,感觉可以作为2025年的一个新的探索方向。希望和大家一起学习,一起进步。今天也是尝试了我能想到的最基本最快速地本地部署多模态大模型的方式,那便是使用ollama。ollama之前咱安装过,然后现在也是直接使用就好。
2025-05-16 15:38:46
184
原创 国内大模型API调用实战
需要注册获取api key,进行授权api接口基本都支持stream流式输出api接口都是典型chat模式,提供不同的角色信息,system,user和assistant, 多轮对话在history中拼接会话信息大家快去使用吧。
2025-05-16 15:27:24
616
原创 全方位指南:从零基础到实战精通,大模型学习教程全面解析!_大模型学习和使用
2023年大西洋彼岸的OpenAi公司,AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,,包含??压缩技术中,为什么量化要优于剪枝、蒸馏???如何搜索裁剪阈值用于裁剪outlier???包含有异常值outlier的特征如何量化???模型剪枝的技术背景??模型剪枝具体方法??模型剪枝前沿方法??语言模型剪枝实例??AI作画–以文生图??扩散模型是什么??扩散模型工作拓展??扩散模型带来的机遇??RLHF的优点和挑战??RLHF如何改善大模型性能??RLHF的实际应用案例??
2025-05-16 15:17:55
541
原创 什么是大模型?一文读懂大模型的基本概念
大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。引申到模型层面,涌现能力指的是当模型的训练数据突破一定规模,模型突然涌现出之前小模型所没有的、意料之外的、能够综合分析和解决更深层次问题的复杂能力和特性,展现出类似人类的思维和智能。ChatGPT对大模型的解释更为通俗易懂,也更体现出类似人类的归纳和思考能力:大模型本质上是一个使用海量数据训练而成的深度神经网络模型,其巨大的数据和参数规模,实现了智能的涌现,展现出类似人类的智能。
2025-05-16 15:06:15
1320
原创 【MySQL】MySQL连接池原理与简易网站数据流动是如何进行
比如我现在是一个调用方,我要向mysql服务器下达一个delete指令,所以写一个delete 的sql语句然后把它构建成一个task,然后把这个task扔到连接池的任务队列里,然后线程就可以从任务队列里拿到任务,然后拿到对应任务的线程不是有msyql连接吗,就可以去执行mysql_query,把task对象中的sql拿出来交给mysql_query执行。实际上在开发的时候把表结构各方面设计好了,接下来要做的不是写各种各样的sql,在做开发的时候,是先要连接数据库的。这里就出现这么多数据库选择那一个。
2025-03-22 15:49:03
972
原创 vllm源码解析(一):整体架构与推理代码
vlllm官方代码更新频发,每个版本都有极大变动, 很难说哪个版本好用.第一次阅读vllm源码是0.4.0版本,对这版圈复杂度极高的调度代码印象深刻0.4.1对调度逻辑进行重构,完全大变样, 读代码速度快赶不上迭代的速度了。现在已经更新到0.5.4, 经过长时间观察,发现主要的调度逻辑基本也稳定了下来, 应该可以作为一个固话的版本去阅读。本文解读依据vllm 0.5.4版本. 没有修改任何代码,大家不必担心夹带私货!打算以六篇文章的篇幅剖析vllm,希望能对大家有所帮助。
2025-03-22 03:02:23
936
原创 Spring如何解决循环依赖
我们先来看看官方文档的说法:通俗来讲,就是A依赖B或者B依赖A,或者C依赖自己本身,或是三个以上,例如A依赖B,B依赖C,C又依赖A。
2025-03-22 01:26:11
345
原创 Springboot各版本与Java JDK的对应关系及JDK商用版本
对于开发工作来说,开发可以选择任意版本,但是涉及到商用,企业使用,我们还是需要关注一下JDK的商用收费问题。当然,除了这些,还有其他更好的选择。Java JDK不仅仅Oracle一家公司在提供,也有其他企业提供。
2025-03-21 23:48:08
461
原创 Spring Cloud之五大组件
自定义负载均衡策略的实现,有两种方式方式一:创建类实现IRule接口,可以指定负载均衡策略(全局)方式二:在客户端的配置文件中,可以配置某一个服务调用的负载均衡策略(局部)
2025-03-10 22:38:48
1324
原创 redis连接服务
要在 redis 服务上执行命令需要一个 redis 客户端。Redis 客户端在我们之前下载的的 redis 的安装包中。以下实例演示了如何连接到主机为 127.0.0.1,端口为 6379 ,密码为 mypass 的 redis 服务上。如果需要在远程 redis 服务上执行命令,同样我们使用的也是。在以上实例中我们连接到本地的 redis 服务并执行。Redis 命令用于在 redis 服务上执行操作。命令,该命令用于检测 redis 服务是否启动。,该命令会连接本地的 redis 服务。
2025-03-10 16:38:58
272
原创 PostgreSQL 17 发布了!非常稳定的版本
这些新特性和改进不仅提升了数据库的性能和功能,也增强了数据库的可用性和灵活性,使得 PostgreSQL 17 成为一个值得期待的版本。
2025-03-10 11:52:35
557
原创 MySQL:顿悟了,添加索引时竟然不锁表?
在 MySQL 数据库中,“锁表” 指的是对数据库表进行锁定,以控制对表中数据的并发访问。锁表是数据库管理系统(DBMS)用来维护数据一致性和完整性的一种机制。当某个事务(Transaction)或操作需要对表中的数据进行修改(如 INSERT、UPDATE、DELETE)时,它可能会请求锁定该表或表的一部分,以防止其他事务同时访问或修改相同的数据,从而导致数据不一致或冲突。那么,在创建索引时一定会锁表吗?
2025-03-07 22:02:44
438
原创 MySQL-练习-数据汇总-CASE WHEN
需求:我们要在报表中显示每种产品的库存量,但我们不想简单地将“ units_in_stock”列放在报表中。SELECTCASE上面的SQL查询结果中,我们创建了一个新列, 通过CASE WHEN语句来对这一列赋值CASE WHEN语法上面的查询中,通过列的值来判断库存的可用性库存大于100 的可用性为高(high)50到100的可用性为中等(moderate)小于50的为低(low)零库存 为 (none)
2025-03-05 18:17:31
972
原创 Java进阶--IO流
我们把数据的传输,可以看做是种数据的流动,按照流动的向,以内存为基准,分为输input 和输出output ,即流向内存是输流,流出内存的输出流。Java中I/O操作主要是指使java.io包下的内容,进输、输出操作。输也叫做读取数据,输出也叫做作写出数据。
2025-03-05 14:44:05
933
原创 ERROR:This version of pnpm requires at least Node.js vXXX 的解决方案
其实这个报错解决很简单,就是我写的有点太详细了,单纯就是 pnpm 与 Node.js 版本不兼容而已,解决方案不会很复杂Node.js的其它版本也可以参考进行解决,但如果是由于其它问题导致的报错,则本文章无法提供参考,请注意文章可能存在个人理解的欠缺,还请各位大佬指点指点,じゃあ!
2025-03-05 00:26:18
897
原创 2023年高频Java面试题集锦(含答案),让你的面试之路畅通无阻
既然是要面试,那么就少不了刷题,实际上春节回家后,哪儿也去不了,我自己是刷了不少面试题的,所以在面试过程中才能够做到心中有数,基本上会清楚面试过程中会问到哪些知识点,高频题又有哪些,所以刷题是面试前期准备过程中非常重要的一点。在面试前三面真的有点急促,一周内就面完了三次面试,接着就开始无尽的等待,整整等了三周左右,终于完成了四面和HR面。最后,千万不要倒在HR面试环节,避重就轻是重点,特别是优点和缺点,如果问到你的规划是什么,请记得一定告诉HR你想成为一名优秀的技术专家!Hytrix的隔离机制有哪些?
2025-03-04 22:08:15
562
原创 028.爬虫专用浏览器-抓取#shadowRoot(closed)下的内容
Shadow DOM是一种在web开发中用于封装HTML标记、样式和行为的技术,以避免组件间的样式和脚本冲突。它允许开发者将网页的一部分隐藏在一个独立的作用域内,从而实现更加模块化和可维护的代码结构。
2025-03-03 17:31:10
474
原创 (七)Spring Cloud Alibaba 2023.x:RocketMQ 消息队列配置与实现
在微服务架构中,异步消息通信是实现系统解耦、提高性能和增强系统可靠性的重要手段。在 Spring Cloud Alibaba 生态中,RocketMQ 与 Spring Boot 深度集成,提供了开箱即用的消息通信解决方案,极大地简化了开发流程,提升了系统的扩展性和可维护性。
2025-03-03 12:18:34
957
原创 私有化部署DeepSeek并SpringBoot集成使用(附UI界面使用教程-支持语音、图片)
ollama已经开放了非常全的api接口了,对于全面私人化定制都是可以支持,详情参照官方文档,我这里只是弄了一个简单的示例。打开【系统环境变量】,新建一个系统环境变量{OLLAMA_MODELS}值为{D:ollamamodels}这一步是为了确保你以后下载的模型都放在别的地址(因为默认安装到C盘,这里可以将模型下载到别的盘)注意,关闭ollama进程,然后再执行下面的步骤,因为安装后默认程序已经打开了。下载完毕后,直接点击安装(默认安装C盘,确保你的C盘有10G以上的空间)
2025-03-03 10:28:37
1032
原创 工业制造:分布式控制系统(DCS),一文掌握。
在工业制造领域,DCS 是分布式控制系统(Distributed Control System)的缩写。DCS 是一种用于监控和控制工业生产过程的自动化系统,通常由一组分布在工厂各个位置的控制单元和计算机组成,用于实时监测和控制生产过程中的各种参数和设备。
2025-03-02 21:19:19
330
原创 在 MySQL 中使用 `REPLACE` 函数
在 MySQL 中,REPLACE函数是一个用于处理字符串的强大工具。它的主要功能是替换字符串中的某些子字符串。REPLACE函数在数据清理、格式化以及处理文本数据时非常有用。本文将详细介绍REPLACE函数的使用方法,包括函数的语法、示例以及实际应用场景。
2025-03-02 20:00:21
449
原创 京东java面试流程_java京东社招面试经历
接待面试的小哥看了分数会说,过了80可以面试了(总分不是100分,具体多少不知道),比较幸运,蒙准了。给出的答案是,jvm调优——对于比较大内容,类似文件需要保存到内容情况,可以考虑调整jvm参数,尽早放入老年代,减少full collection中断程序,这些都是jvm核心思想上看到的。然后是数据库调优——建索引、从业务设计上减少联表查询、减少复杂sql防止索引无用等,这部分是看的ali出的编程规范里边写的一些东西,把里边记得的东西说了说。4、数据结构,顺序表(数组)、链表,得看看基本特性,送分题。
2025-03-02 18:21:24
502
原创 【SQL】MySQL中的字符串处理函数:concat 函数拼接字符串,COALESCE函数处理NULL字符串
内容搜索词(contentKeyword):如果提供了内容搜索词,将会检查文章的标题和内容是否包含该关键词的子串。用户搜索词(userKeyword):如果提供了用户搜索词,将会检查文章的作者用户名是否包含该关键词的子串。类别ID(categoryId):如果提供了类别ID,将会检查文章的类别ID是否匹配指定的ID。用户ID(userId):如果提供了用户ID,将会检查文章的作者用户ID是否匹配指定的ID。函数是一个非常实用的字符串函数,用于将两个或多个字符串参数连接成一个单一的字符串。
2025-03-01 14:31:36
1023
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人