自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(226)
  • 收藏
  • 关注

原创 最全面的 大模型私有化+精调:面向垂直行业与特定场景之需

大模型私有化(Model Private Deployment)指的是将预训练的大型人工智能模型(如GPT、BERT等)部署到企业自己的硬件环境或私有云平台上。与公有云服务或模型即服务(Model-as-a-Service)相比,私有化部署能够给企业带来更高级别的数据安全性和自主控制能力。对数据隐私和安全要求高、需要自主控制AI模型运行环境的企业而言,或者在特定地理位置因法律法规限制不能使用公有云服务的情况下,这种需求是确实存在的。

2025-06-05 00:04:23 847

原创 大模型综述来了!一文带你理清全球AI巨头的大模型进化史

大模型必然是未来很长一段时间我们工作生活的一部分,而对于这样一个与我们生活高度同频互动的“大家伙”,除了性能、效率、成本等问题外,大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重,机器幻觉是大模型目前还没有极佳解决方案的主要问题,大模型输出的有偏差或有害的幻觉将会对使用者造成严重后果。同时,随着 LLMs 的“公信度”越来越高,用户可能会过度依赖 LLMs 并相信它们能够提供准确的信息,这点可以预见的趋势增加了大模型的安全风险。除了误导性信息外,

2025-06-04 23:52:04 894

原创 在亚马逊云科技AWS上利用SageMaker机器学习模型平台搭建生成式AI应用(附Llama大模型部署和测试代码)

接下来,小李哥将会每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践,并应用到自己的日常工作里。本次介绍的是如何在Amazon SageMaker上使用大语言模型Meta Llama 7B,提供可扩展和安全的AI解决方案。通过Amazon API Gateway和AWS Lambda将应用程序与AI模型集成。

2025-06-04 23:38:21 782

原创 人工智能横行的时代:小体量团队的赛道突围策略

在AI技术快速普及的时代,小体量团队需要重新思考自己的战略定位和竞争优势。垂直深耕法则:选择专业门槛高但规模适中的细分市场,建立领域知识壁垒数据飞轮法则:设计产品自生成高质量数据的机制,形成改进闭环开源杠杆法则:最大化利用开源生态,专注差异化价值创造交互创新法则:在用户体验层而非基础模型层竞争信任构建法则:将伦理合规约束转化为产品优势敏捷迭代法则:建立远超大公司的学习和适应速度未来的AI生态将呈现"基础模型集中化,应用场景碎片化"的格局。

2025-06-04 23:25:48 920

原创 【大模型微调】一文掌握7种大模型微调的方法

本篇文章深入分析了大型模型微调的基本理念和多样化技术,细致介绍了LoRA、适配器调整(Adapter Tuning)、前缀调整(Prefix Tuning)等多个微调方法。详细讨论了每一种策略的基本原则、主要优点以及适宜应用场景,使得读者可以依据特定的应用要求和计算资源限制,挑选最适合的微调方案。大型语言模型(LLM)的训练过程通常分为两大阶段:阶段一:预训练阶段在这个阶段,大型模型会在大规模的无标签数据集上接受训练,目标是使模型掌握语言的统计特征和基础知识。

2025-06-04 23:13:23 934

原创 Ollama(本地部署大模型) + LobeChat(聊天界面) = 自己的ChatGPT

本篇文章介绍了本地大模型的部署和 LobeChat 界面的部署,成功在本地部署属于自己的ChatGPT。上面也只是关键步骤的说明,遇到问题多看下官方的安装文档。本文起到抛砖引玉作用。

2025-06-04 23:01:10 741

原创 10分钟玩转Coze,打造专属AI智能体

扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 AI 应用,并将 AI 应用发布到各个社交平台、通讯软件,也可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。

2025-06-04 22:30:04 744

原创 Java 进阶面试指南

随着 Java 在企业级开发中的广泛应用,对 Java 开发者的要求也越来越高。本文将详细介绍 Java 进阶知识,包括 JVM 深入解析、高级多线程与并发、性能优化、设计模式、Spring 框架深度剖析等,为面试提供全面的准备。JVM 内存管理主要包括堆和方法区。

2025-05-24 14:40:19 913

原创 90天Java进阶训练营三期教程 让Java不再难懂

训练营的目的很简单:通过解读、测试、实战等方式帮助你理解、掌握知识,增长项目经验的同时,升级你的项目阅读能力、开发能力。课时8、开源框架-快速开发平台renren-fast解读(上).mp4 1.17G。课时17、开源项目-秒杀、抢购解决方案miaosha解读.mp4 505.81M。课时5、redis的缓存,以及主从、高可用配置.mp4 586.10M。课时6、redis的缓存使用实例分析、分布式锁运用.mp4 1.00G。课时3、spring boot运行原理、装配模式.mp4 1.96G。

2025-05-24 14:38:07 367

原创 什么是AI模型训练?到底在训练什么?今天一次讲清楚!

AI模型训练实质上是利用数据驱动的方法,使人工智能系统能够从经验数据中自主学习,并针对特定任务进行高效预测、分类或内容生成。此过程的核心在于通过优化算法调整模型内部参数(例如,在神经网络中的权重和偏置),以最小化模型输出与实际目标值之间的误差或损失函数。这样做的目的是为了提高模型的泛化能力,使其在未见过的数据集上也能保持出色的性能。

2025-05-22 00:06:51 1014

原创 一文搞懂大模型最容易混淆的概念 量化、剪枝与蒸馏

大模型的量化、剪枝和蒸馏是三种常见的模型压缩技术,它们各自有不同的目标和实现方法,但。它们之间既有区别,又有联系,非常容易混淆。量化是将模型中的浮点数权重和激活值转换为低精度的整数表示(如从32位浮点数转换为8位整数)。这种转换可以显著减少模型的存储空间和计算复杂度,同时在某些硬件上加速推理过程。实现方法:1. 权重量化:将模型权重从高精度浮点数转换为低精度整数。2. 激活量化:将激活值也进行低精度表示。3. 量化感知训练(QAT):在训练过程中加入量化操作,使模型在训练时就适应低精度计算。

2025-05-21 23:11:16 992

原创 【顶刊级科研绘图】AI支持下Nature级数据可视化(如何画图、如何标注、如何改图、如何美化、如何组合、如何排序)

😎 作者介绍:资深程序员,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)需要的朋友 点击下方👇👇👇【微信名片】,100%免费领取。

2025-05-21 23:07:37 691

原创 【大模型】初识大模型(非常详细)零基础入门到精通,收藏这一篇就够了_大模型入门

大模型的定义大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文讨论的大模型将以平时指向比较多的大语言模型为例来进行相关介绍。大模型的基本原理与特点大模型的原理是基于深度学习,它利用大量的数据和计算资源来训练具有大量参数的神经网络模型。通过不断地调整模型参数,使得模型能够在各种任务中取得最佳表现。

2025-05-21 23:04:09 770

原创 【AI系统】感知量化训练 QAT

之所以称之为“fake”量化,是因为它们对数据进行量化并立即反量化,添加了类似于在量化推理过程中可能遇到的量化噪声,以模拟训练期间量化的效果。为了求得网络模型 tensor 数据精确的 Min 和 Max 值,因此在模型训练的时候插入伪量化节点来模拟引入的误差,得到数据的分布。在这个过程中,转换器会将原始模型中的 FakeQuant 算子分解成 Q 和 DQ 两个算子,分别对应量化和反量化操作,包含了该层或者该激活值的量化 scale 和 zero-point。

2025-05-21 23:00:24 744

原创 【AIGC】baichuan-7B大模型

开源可商用的大规模预训练语言模型baichuan-7B大模型概述baichuan-7B 是由百川智能开发的一个开源可商用的大规模预训练语言模型。基于 Transformer 结构,在大约1.2万亿 tokens 上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威 benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。

2025-05-21 22:57:40 980

原创 Ollama内网离线部署大模型

1、创建一个名为 Modelfile 的文件,并使用 FROM 指令,填写的模型的本地文件路径。访问huggingface下载qwen1_5-0_5b-chat-q5_k_m.gguf模型。2、在Ollama中创建模型。

2025-05-21 22:47:16 248

原创 MoneyPrinterPlus全面支持本地Ollama大模型

通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。对于没有安装过Ollama的朋友,可以直接进入Ollama的官网: https://ollama.com/ 进行安装和下载。如果要下载对应的模型,可以ollama pull llama3从Ollama的模型注册表中拉取指定的模型到本地。

2025-05-21 22:43:48 897

原创 Java SpringBoot 调用大模型 AI 构建智能应用实战指南

Spring AI是Spring框架的一个扩展,用于简化AI应用的开发。它提供了与AI大模型的集成,支持智能对话、角色预设、流式响应等功能。功能特点模型调用:通过简单的API调用,可以与各种AI大模型进行交互。提示词模板:支持定义提示词模板,方便生成高质量的文本内容。检索增强生成(RAG):结合外部数据源,实现更准确的回答。多模态支持:支持文生图、文生语音等多模态应用。适用场景智能客服:通过AI大模型生成自然语言回答,提升客服效率。写作助手:帮助用户生成文章、文案等内容。智能教育。

2025-05-21 22:39:57 801

原创 DevChat一网打尽所有大模型——给你全新的编程体验

如果你对 GPT 感兴趣,那么你没有理由拒绝这款背靠 GPT-4 的聊天式编程辅助工具【DevChat目前【DevChat】提供的不是像 ChatGPT 那样的网页交互,而是直接提供了 VS Code 插件,可以直接在编程环境下与之对话,使用起来更加方便。所以我们打开VSCode在扩展商店中就可以搜索到【DevChat】,但这里需要用到python3.与git,所以需要提前在电脑上安装一下【Python3.0】与【Git】否则安装后会出现一些错误提示。官网直接下载安装即可。

2025-05-21 22:35:36 944

原创 AI浏览器BrowserUse:概述与背景(一)

随着人工智能的迅速发展,AI 技术已开始渗透到我们生活的方方面面。浏览器,作为我们与互联网交互的主要工具,早已不仅仅是一个网页展示工具。AI 浏览器的出现,让浏览器不仅能够提供基本功能,还能根据用户需求自动化执行任务、提供个性化的推荐和优化用户体验。在本系列文章中,我们将深入探讨如何构建一个智能浏览器,并介绍开源项目 Browser Use,作为实现 AI 浏览器的基础。通过这一系列的教程,你将了解如何从安装、调试到优化这个项目,最终打造一个功能强大的 AI 浏览器。

2025-05-21 22:10:40 345

原创 ai大模型应用开发:零基础入门到精通ai大模型应用开发,(非常详细)收藏我这一篇就够了!

随着大模型技术的飞速发展,我们正站在一个全新的技术前沿,探索着如何将这些强大的工具应用于实际问题的解决。如果你对AI大模型应用开发充满热情,那么你可以读一下这篇文章——一个系统全面的入门指南,专为渴望深入AI世界的你设计。先来总结下整个路径图:至今我们还没发现有其它博主如此系统和全面地写一套AI入门教程。

2025-05-21 21:23:46 1015

原创 AI大模型ms-swift框架实战指南(六):本地部署Chat对话全流程

在人工智能领域蓬勃发展的当下,将强大的大模型高效部署到实际应用场景中,成为了释放其巨大潜力的关键环节。本指南旨在为您详尽呈现基于swift框架的大模型部署全过程,从基础的环境搭建,到复杂的模型下载与部署实操,再到通过 Chat App 进行直观的应用测试,每一步都力求精准、清晰,助力您顺利完成大模型的部署实践,开启智能应用的新篇章。

2025-05-21 21:20:51 561

原创 AI入门7:python三种API方式调用本地Ollama+DeepSeek

用途: 这个端点用于支持对话式的交互。总结而言,/api/generate 更适合一次性生成任务,而 /api/chat 更适合需要持续对话和上下文记忆的任务。2、打开vsCode,准备一个全新的环境,我用的是python3.12.9,具体运行环境设置方式,在上面的参考文档里有。功能: 它可以用于各种生成任务,如文章创作、代码生成、故事编写等,其中每次请求都是独立的,不依赖于前一次请求的结果。base_url:换成你自己ollama的地址,地址后面的“/v1”不能去掉,这是ollama的API地址。

2025-05-21 21:17:05 540

原创 AI Agent破局:智能化与生态系统标准化的颠覆性融合!

AI Agent(人工智能代理)是指一种可以自主感知环境、处理信息并根据预定目标执行行动的智能系统。与传统的自动化脚本或被动系统不同,AI Agent能够根据环境的变化做出决策,并能够执行复杂的任务。被动Agent:这种类型的Agent通常依赖外部输入进行任务执行。它只能响应请求,而无法主动做出决策。例如,一些简单的任务调度系统。主动Agent:这种类型的Agent不仅能响应外部输入,还能根据环境的变化主动做出决策。例如,智能家居系统中,根据室内温度数据主动开启或关闭空调。自主Agent。

2025-05-21 21:14:02 760

原创 语言大模型的浮点运算分配

在前向传播的总时间中,有40%的时间用于注意力层,53%用于MLP。在注意力层内部,时间分配在4个不同的线性层上,其中有2个线性层花费的时间大致相同(linear_1、linear_2),一个花费的时间多50%(linear_3),另一个则是前两者的两倍(linear_0)。假设一个房屋配备了一个运行良好的恒温器,那么我们能看到炉子燃烧的油量(M)与室外温度(V)之间存在强烈的负相关关系,同时炉子燃烧的油量(M)与室内温度(P)之间没有相关性,此外,室外温度(V)与室内温度(P)之间也没有相关性。

2025-05-18 23:56:45 801

原创 蓝耘 MaaS 牵手海螺 AI 视频,凭什么让视频创作直接上升一个档次???

蓝耘 MaaS,即 “Model as a Service”(模型即服务)平台,它宛如一座巍峨的科技殿堂,汇聚了众多先进的人工智能模型。这些模型是无数科研人员智慧与心血的结晶,经过大量数据的训练和优化,具备了卓越的性能和强大的功能。它们就像一群训练有素的专业团队,各自在不同的领域发挥着独特的作用。海螺 AI 视频专注于视频创作领域,凭借其先进的人工智能技术,为视频制作带来了革命性的变革。它就像一个拥有神奇魔力的魔法师,能够深入理解视频中的各种元素,并根据创作者的需求进行巧妙的处理和优化。

2025-05-18 23:52:32 1006

原创 最全面的 大模型私有化+精调:面向垂直行业与特定场景之需

大模型私有化(Model Private Deployment)指的是将预训练的大型人工智能模型(如GPT、BERT等)部署到企业自己的硬件环境或私有云平台上。与公有云服务或模型即服务(Model-as-a-Service)相比,私有化部署能够给企业带来更高级别的数据安全性和自主控制能力。对数据隐私和安全要求高、需要自主控制AI模型运行环境的企业而言,或者在特定地理位置因法律法规限制不能使用公有云服务的情况下,这种需求是确实存在的。

2025-05-18 23:43:12 777

原创 手把手教你本地部署清华大模型 ChatGLM3

这是 ChatGPT 应用的访问 URL接着,在仓库目录下执行。

2025-05-18 23:39:27 646

转载 开源vs闭源,大模型的未来在哪一边?

开源和闭源,两种截然不同的开发模式,对于大模型的发展有着重要影响。开源让技术共享,吸引了众多人才加入,推动了大模的创新。而闭源则保护了商业利益和技术优势,为大模型的商业应用提供了更好的保障。那么,现在问题便来了:你认为大模型的未来会走向哪一边呢?请分享你的看法吧!开源vs闭源作为人工智能领域的一个重要方向,大模型的发展与开源问题密不可分。我个人认为,开源有利于促进技术创新和知识共享,更有利于打造一个更加公平和透明的技术生态。不过目前来看,大模型的未来很可能会继续采取开源和闭源相结合的方式。

2025-05-18 23:35:27 833

原创 如何使用Perplexity AI:超全的Perplexity使用教程

一个产品=谷歌搜索+GPT+Claude,还不用担心封号等问题,目前大家公认最厉害的AI搜索产品Perplexity到底有多火?今天就来跟讲讲——如何在国内使用Perplexity,以及如何充值订阅Perplexity Pro。为什么它受大家喜欢,无非就是以下几点。:通过实时联网,Perplexity能够快速搜索并整合答案,方便用户获取所需信息。:不仅搜索网页信息,还能整合学术论文、视频内容和社交媒体讨论,提供更为全面的答案。:每个答案后都有信息来源的标注,用户能够验证所获得的信息。

2025-05-18 23:23:00 1090

原创 大模型笔记02--基于fastgpt和oneapi构建大模型应用平台

随着大模型的快速发展,众多IT科技厂商都开发训练了各自的大模型,并提供了各具特色的AI产品。早期比较常见的做法是提供聊天机器人,如今逐步发展为各类AI智能体,用户可以在平台上选择自己需要能力构建特有的智能体。例如语聚AI,智谱清言,Fastgpt, coze, dify 等平台,它们都具备了较强的智能体定制能力。如果想快速体验可以直接在平台上注册账号,按需使用即可。若想为自己的团队或者公司提供智能体,那么就可以基于开源产品搭建相关平台,或者二开。

2025-05-18 23:19:15 703

原创 大模型微调(Fine-tuning)原理详解与实际业务场景分析

在人工智能迅猛发展的今天,大型预训练语言模型(如GPT、BERT等)已成为自然语言处理领域的核心技术。然而,这些"通用"模型在面对特定业务需求时往往表现不尽如人意。本文将深入探讨大模型微调(Fine-tuning)的技术原理,详细分析其工作机制,并重点阐述在实际业务场景中何时需要微调而非直接使用基础模型。大模型微调(Fine-tuning)是指在预训练好的大型语言模型基础上,使用特定领域或任务的数据集进行进一步训练,使模型适应特定需求的技术过程。

2025-05-18 23:14:31 915

原创 大模型入门教程(非常详细)从零基础入门到精通,看完这一篇就够了

大模型就像一座庞大的图书馆,里面有非常多的书籍。但与普通图书馆不同的是,这座图书馆中的每本书都是关于不同事物的描述和知识。而这些书籍中的每一页都代表了这个事物的一些特征或细节。现在,想象一下,你是一个研究员,你想了解各种各样的话题,比如天气、历史、科学等等。但是你没有时间和精力去阅读所有的书籍,而且有些书籍可能非常专业和深奥,你也未必能理解。这时,一位聪明的朋友建议你去一座巨大的图书馆,这个图书馆里面的每本书都已经被一个智能的读者阅读过,并且将书中的重要内容总结成了简单易懂的概要。

2025-05-18 23:09:18 550

原创 九大国产AI大模型深度对比,第二款简直是宝藏!我和6亿人都在用

现有大模型大都是靠深度学习技术练成的,就像人类要学习知识一样,它们也得从海量数据中学习各种"技能"。这些模型最神奇的地方在于它们的"大脑构造",也就是神经网络架构。每个模型都有自己的独门秘籍,包括网络结构设计训练数据的选择和优化方法。这就跟每个人都有自己的学习方法一样,决定了它们在不同任务中表现。

2025-05-18 23:04:47 561

原创 蓝耘元生代引领AI开发新潮流:DeepSeek R1V3满血版亮相,开启高效应用新时代

蓝耘元生代推理引擎的推出,标志着AI应用开发进入了一个新的时代。从简易的大模型调用到智能客服系统的搭建,再到模型微调的定制化操作,蓝耘元生代为开发者提供了前所未有的便利和高效。而DeepSeek R1/V3满血版则进一步提升了平台的性能,满足了不同开发者和企业用户对更高性能AI服务的需求。如果你正在寻找一个强大且易用的AI开发平台,蓝耘元生代无疑是你不可错过的选择。立即注册,体验500万免费tokens~蓝耘元生代平台;IDE代码实现多问多答;chatbox。

2025-05-16 21:30:09 638

原创 端到端自动驾驶大模型:视觉-语言-动作模型 VLA

随着Nerf、3DGS技术的发展,感知道路结构的技术逐渐成熟,这减少了对百度、高德等高清地图的依赖,即使在普通导航地图区域也能感知标准的道路结构,大大提升了自动驾驶系统实用性。目标、障碍物检测和道路结构感知逐渐统一,但决策规划仍以Rule-based为主,导致算法迭代需要大量人力,代码复杂且泛化能力有限。随着Tesla FSD v13版本的发布,基于强化学习的决策规划算法有潜力超越经过大量人力资源精心打磨的规则式算法,而且感知和规划可以融合为一个AI模型,即端到端自动驾驶大模型。

2025-05-16 21:25:58 1031

原创 深度拆解:AI Agent发展演练·数字挑战

前引:“”从英语翻译过来就是代理、中介的意思,它描述了一种拥有欲望、信念、意图以及采取行动能力的载体。在计算机科学与人工智能领域中,“Agent”又是如何的呢?下面跟着我一起来看看吧!

2025-05-16 21:21:08 1100

原创 挑战用AI替代我的工作——从抢券困境到技术突破

经过一系列的尝试和优化,最终,我成功利用AI影刀脚本抢到了心仪的券,并顺利找到了拼单的伙伴。这一过程不仅让我感受到了技术的力量,也让我深刻认识到,合理利用AI工具能够为我们解决实际问题提供强大的支持。明确需求:在使用自动化工具之前,需要清楚地了解自己的需求,例如抢券时所需的点击速度、持续时间和目标位置。选择合适的工具:不同的自动化工具具有不同的功能和优势,要根据具体需求选择最适合的工具。影刀的AI功能为连点器的实现提供了强大的支持。不断优化。

2025-05-16 21:15:31 539

原创 强大的AI网站推荐(第五集)—— Suno

Suno 是一款极具创新性的 AI 音乐创作平台,以其强大的功能和便捷的操作被众多用户誉为“最强音乐类 AI”。它通过深度学习技术,能够根据用户输入的歌词、风格提示词等信息,快速生成高质量的音乐作品,涵盖旋律、人声和伴奏。这种智能化的创作方式极大地降低了音乐创作的门槛,让即使没有专业音乐背景的用户也能轻松创作出属于自己的音乐。Suno 提供了丰富的音乐风格选择,从流行、摇滚到电子、古典、嘻哈等,几乎涵盖了所有常见的音乐类型。用户可以根据自己的喜好和创作需求,选择不同的风格进行创作。

2025-05-16 21:10:34 899

原创 如何提升大模型的智能水平?

随着人工智能技术的飞速发展,大模型在多个领域展现出了前所未有的能力,但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。那么,如何让大模型变得更聪明呢?以下从算法创新、数据质量与多样性、模型架构优化等方向进行详细阐述。

2025-05-16 21:02:43 987

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除