Titanic数据分析项目——Kaggle数据分析项目实战1

目前预测准确度达到77.511%, 会持续优化并且更新。
在这里插入图片描述

一、特征工程:

1、先对缺失值进行填充,先找到缺失值的位置,数值型数据填充众数,字符数据或者是离散型数据则填充出现最多的数据。
2、标准化数值型数据, 根据标准化数据公式:
x standardized = x − mean ( x ) std ( x ) x_{\text{standardized}} = \frac{x - \text{mean}(x)}{\text{std}(x)} xstandardized=std(x)xmean(x)
3、增加特征值:
(1) 票价等级:将票价大于均值的记为1,将票价小于等于均值的记为0,分别表示票价高者和票价低者。
(2) 是否存在亲属:将有亲属的标记位1,无亲属的标记为0。
(3) 同船亲属的数量,将同船的有关系的人数加起来,并且初始化这一列数据。
(4) 同船亲属的数量等级:求出同船亲属数量大于同船亲属数量的均值,记为1,小于等于同船亲属数量,记为0。
(5) 通过对字符型数据也就是"name"那一列的观察与处理,发现会有三种不同的称呼: “Mrs”, “Miss”, “Mr”,分别记为0, 1, -1。
(6) 年龄级别: 将大于平均年龄的记为1,小于等于平均年龄的记为0
(7) 还在思考,后续会进行补充…

特征工程代码实现:

from sklearn.preprocessing import StandardScaler
us_list = ['舱位等级', '性别', '年龄', '同船的兄弟姐妹/配偶数量', '同船的父母/孩子数量', '船票号码', '票价', '船舱号码', '登船港口'] 

#处理数据
def Work_Data(df):
   

    List1 = [] 
    for i in df.index:
        # print(df.loc[i, '姓名'])
        ustr = str(df.loc[i, '姓名'])
        if ustr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘗_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值