【Datawhale吃瓜教程】Task02 打卡笔记

第三章 线性回归

    学习西瓜书第三章线性回归的过程中,我获得了许多宝贵的心得体会。

    首先,我深刻体会到线性回归的直观性和基础性。线性回归通过拟合自变量与因变量之间的线性关系来预测目标值,这种模型形式简单易懂。重点理解了最小二乘法的精髓。最小二乘法通过最小化预测值与实际值之间的均方误差来求解模型参数,这种方法不仅在数学上易于处理,而且在实际应用中效果良好。我认识到,最小二乘法不仅是线性回归的求解方法,更是一种优化思想的体现。

    通过实践和应用线性回归模型,我深刻体会到理论知识与实际应用之间的紧密联系。在实际问题中,我们需要根据数据的特点选择合适的模型参数、处理异常值、进行特征工程等,这些都需要我们在实践中不断探索和总结。

    线性回归作为机器学习中最基础的算法之一,虽然有其局限性,但在许多实际问题中仍具有广泛的应用价值。通过对其基本原理、求解方法、评估指标以及改进方法的学习,可以更好地理解和应用线性回归模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值