- 博客(7)
- 收藏
- 关注
原创 决策树算法
4. 令max_depth=3,把模型生成的dot格式的文件转化为png格式的图片,并分析该模型下哪些特征比较重要。print("特征重要性{}".format(tree.feature_importances_))print("训练集精度:{}".format(train_score))print("训练集精度:{}".format(train_score))print("测试集精度:{}".format(test_score))print("测试集精度:{}".format(test_score)
2025-06-14 14:23:22
394
原创 随机森林算法
4) 要求拆分数据集时,把x_train,x_test,y_train,y_test的纬度打印输出;print('X_train维度:',X_train.shape)print('Y_train维度:',Y_train.shape)print('训练精度:',train_accuracy100)print('X_test维度:',X_test.shape)print('Y_test维度:',Y_test.shape)print('训练精度:',train_accuracy10)
2025-06-14 14:20:05
365
原创 岭回归算法
3. 要求拆分数据集时,把x_train,x_test,y_train,y_test的纬度打印输出。4. 要求分别设置alpha的参数为0.01,1,10,分析对应的alpha取值下w的分布情况,以及模型的拟合问题。print(f"当alpha = {alpha}时,训练集均方误差:", train_mse)print(f"当alpha = {alpha}时,测试集均方误差:", test_mse)print(f"当alpha = {alpha}时,w的分布:", w)# 3. 打印数据集维度。
2025-06-14 14:16:33
296
原创 2的b的[特殊字符]
df["年龄组"] = pd.cut(df["年龄"], bins=[20, 22, 24, 26], labels=["20-22", "22-24", "24-26"])"时间": ["2023-06-01", "2023-06-02", "2023-06-03", "2023-06-04"]grouped = df.groupby("评级").agg({"分数": ["mean", "max", "min"]})"姓名": ["赵一", "钱二", "孙三", "李四"],
2025-06-14 14:12:25
267
原创 【无标题】
new_row = {"姓名": "赵六", "成绩": 85, "年龄": 22, "时间": "2023-05-04"}info["年龄"].fillna(info["年龄"].mean(), inplace=True)info["工资"].fillna(info["工资"].mean(), inplace=True)"时间": ["2023-05-01", "2023-05-02", "2023-05-03"]df["加权成绩"] = df["成绩"] * 1.1 + df["年龄"] * 0.5。
2025-06-14 13:53:56
431
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅