自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 简易留言板

发布

2025-11-06 21:39:22 389

原创 Tab栏切换

商品介绍

2025-11-06 21:37:00 402

原创 决策树算法

4. 令max_depth=3,把模型生成的dot格式的文件转化为png格式的图片,并分析该模型下哪些特征比较重要。print("特征重要性{}".format(tree.feature_importances_))print("训练集精度:{}".format(train_score))print("训练集精度:{}".format(train_score))print("测试集精度:{}".format(test_score))print("测试集精度:{}".format(test_score)

2025-06-14 14:23:22 394

原创 随机森林算法

4) 要求拆分数据集时,把x_train,x_test,y_train,y_test的纬度打印输出;print('X_train维度:',X_train.shape)print('Y_train维度:',Y_train.shape)print('训练精度:',train_accuracy100)print('X_test维度:',X_test.shape)print('Y_test维度:',Y_test.shape)print('训练精度:',train_accuracy10)

2025-06-14 14:20:05 365

原创 岭回归算法

3. 要求拆分数据集时,把x_train,x_test,y_train,y_test的纬度打印输出。4. 要求分别设置alpha的参数为0.01,1,10,分析对应的alpha取值下w的分布情况,以及模型的拟合问题。print(f"当alpha = {alpha}时,训练集均方误差:", train_mse)print(f"当alpha = {alpha}时,测试集均方误差:", test_mse)print(f"当alpha = {alpha}时,w的分布:", w)# 3. 打印数据集维度。

2025-06-14 14:16:33 296

原创 2的b的[特殊字符]

df["年龄组"] = pd.cut(df["年龄"], bins=[20, 22, 24, 26], labels=["20-22", "22-24", "24-26"])"时间": ["2023-06-01", "2023-06-02", "2023-06-03", "2023-06-04"]grouped = df.groupby("评级").agg({"分数": ["mean", "max", "min"]})"姓名": ["赵一", "钱二", "孙三", "李四"],

2025-06-14 14:12:25 267

原创 【无标题】

new_row = {"姓名": "赵六", "成绩": 85, "年龄": 22, "时间": "2023-05-04"}info["年龄"].fillna(info["年龄"].mean(), inplace=True)info["工资"].fillna(info["工资"].mean(), inplace=True)"时间": ["2023-05-01", "2023-05-02", "2023-05-03"]df["加权成绩"] = df["成绩"] * 1.1 + df["年龄"] * 0.5。

2025-06-14 13:53:56 431 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除