34. 在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8 输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6 输出:[-1,-1]
分析题目
非递减顺序排列不太好理解,其实想表达的是非严格递增序列,还是顺序序列,所以这题还是用二分法来解决
要找到的目标值可以是连续的多个,要找到这个数的起止范围,可以先用二分法求出一个目标target,然后向前向后遍历找出起止索引,得到范围
代码
解法1
class Solution {
public int[] searchRange(int[] nums, int target) {
int begin = 0;
int end = nums.length - 1;
int index = -1;//默认初始值为未找到状态
int[] result = {-1, -1};//未找到情况下返回改结果数组
//异常处理。如果数组为空直接返回结果数组
if (nums == null || nums.length == 0) {
return result;
}
//二分查找法找出一个目标值
while (begin <= end) {
int mid = begin + (end - begin) / 2;
if (nums[mid] == target) {
index = mid;
break;
} else if (nums[mid] < target) {
begin = mid + 1;
} else {
end = mid - 1;
}
}
//如果找不到直接返回结果数组
if (index == -1) {
return result;
}
//如果找到了,把开始和结束指针都初始化为当前确定的目标值索引位置
begin = end = index;
//向前向后分别寻找目标值的起止索引
while ( begin > 0&&nums[begin - 1] == target) {
begin--;
}
while ( end < nums.length - 1&&nums[end + 1] == target) {
end++;
}
//修改结果数组的值
result[0] = begin;
result[1] = end;
return result;
}
}
这个做法不是纯用二分查找来做的,当数组中所有元素都是目标值的时候时间复杂度会是O(n)
解法2
这个解法效率就会比较高,用两次二分查找确定左边界和有边界
class Solution {
public int[] searchRange(int[] nums, int target) {
int left = findLeftBound(nums, target);
int right = findRightBound(nums, target);
return new int[]{left, right};
}
// 找左边界(第一个 >= target 的位置,如果等于 target 则是左边界,否则未找到)
private int findLeftBound(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
int res = -1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
res = mid;
right = mid - 1; // 继续向左找更左的边界
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return res;
}
// 找右边界(最后一个 <= target 的位置,如果等于 target 则是右边界,否则未找到)
private int findRightBound(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
int res = -1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
res = mid;
left = mid + 1; // 继续向右找更右的边界
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return res;
}
}
8万+

被折叠的 条评论
为什么被折叠?



