HOT100题打卡第34天——二分查找

34. 在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

分析题目

非递减顺序排列不太好理解,其实想表达的是非严格递增序列,还是顺序序列,所以这题还是用二分法来解决

要找到的目标值可以是连续的多个,要找到这个数的起止范围,可以先用二分法求出一个目标target,然后向前向后遍历找出起止索引,得到范围


代码

解法1

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int begin = 0;
        int end = nums.length - 1;
        int index = -1;//默认初始值为未找到状态

        int[] result = {-1, -1};//未找到情况下返回改结果数组
        //异常处理。如果数组为空直接返回结果数组
        if (nums == null || nums.length == 0) {
            return result;
        }
        //二分查找法找出一个目标值
        while (begin <= end) {
            int mid = begin + (end - begin) / 2;
            if (nums[mid] == target) {
                index = mid;
                break;

            } else if (nums[mid] < target) {
                begin = mid + 1;
            } else {
                end = mid - 1;
            }

        }
        //如果找不到直接返回结果数组
        if (index == -1) {
            return result;
        }
        //如果找到了,把开始和结束指针都初始化为当前确定的目标值索引位置
        begin = end = index;
        //向前向后分别寻找目标值的起止索引
        while ( begin > 0&&nums[begin - 1] == target) {
            begin--;
        }
        while ( end < nums.length - 1&&nums[end + 1] == target) {
            end++;
        }


        //修改结果数组的值
        result[0] = begin;
        result[1] = end;
        return result;

    }
}

这个做法不是纯用二分查找来做的,当数组中所有元素都是目标值的时候时间复杂度会是O(n)

解法2

这个解法效率就会比较高,用两次二分查找确定左边界和有边界

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int left = findLeftBound(nums, target);
        int right = findRightBound(nums, target);
        return new int[]{left, right};
    }

    // 找左边界(第一个 >= target 的位置,如果等于 target 则是左边界,否则未找到)
    private int findLeftBound(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        int res = -1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                res = mid;
                right = mid - 1; // 继续向左找更左的边界
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return res;
    }

    // 找右边界(最后一个 <= target 的位置,如果等于 target 则是右边界,否则未找到)
    private int findRightBound(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        int res = -1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                res = mid;
                left = mid + 1; // 继续向右找更右的边界
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return res;
    }
}

### LeetCode Hot 100 编程问及解决方案概述 LeetCode Hot 100 是一份精选的编程目列表,广泛被用于算法学习和面试准备。这些问涵盖了多种数据结构算法类型,包括但不限于数组、链表、字符串、树、图、动态规划等。 #### 常见型与解法 - **两数之和 (Two Sum)** 给定一个整数数组 `nums` 和一个目标值 `target`,请你在该数组中找出和为目标值的那两个整数,并返回它们的数组下标。 解决方案可以使用哈希表来实现 $O(n)$ 的时间复杂度: ```cpp vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> map; for (int i = 0; i < nums.size(); ++i) { int complement = target - nums[i]; if (map.find(complement) != map.end()) { return {map[complement], i}; } map[nums[i]] = i; } return {}; } ``` - **最长有效括号 (Longest Valid Parentheses)** 给定一个只包含字符 `'('` 和 `')'` 的字符串,计算其中有效括号子串的最大长度。 可以使用栈或动态规划的方法来解决此问。例如,使用栈的方式可以遍历字符串并维护栈中的索引,从而找到最长的有效括号序列 [^1]。 - **搜索旋转排序数组 (Search in Rotated Sorted Array)** 假设按照升序排序的数组在某个关键点上进行了旋转(例如 `[0,1,2,4,5,6,7]` 变成了 `[4,5,6,0,1,2]`),给定一个目标值,请判断是否存在该值。 使用二分查找策略,通过比较中间元素和左右边界的值来调整搜索范围。 - **组合总和 (Combination Sum)** 给定一个无重复元素的数组 `candidates` 和一个目标数 `target`,找出所有满足条件的唯一组合:这些数字的加和等于目标值且每个数字可以无限制重复使用。 此问通常使用回溯法解决,递归地尝试所有可能的组合路径。 - **接雨水 (Trapping Rain Water)** 给定一个非负整数数组 `height`,表示一个高程图,计算它可以存储多少单位的雨水。 可以使用双指针方法或者预处理左右最大高度数组来优化计算,确保线性时间复杂度。 #### 数据结构算法的应用 - **栈** 栈常用于处理括号匹配、表达式求值等问。例如,“字符串解码”可以通过栈来解析嵌套的编码结构 [^2]。 - **排序与双指针** 在“两数之和”的变体中,可以利用排序后使用双指针技巧快速定位符合条件的元素对 [^3]。 - **动态规划** 许多 LeetCode Hot 100 目涉及动态规划,如“最大子数组和”、“不同路径”、“编辑距离”等。动态规划的核心是定义状态转移方程,并逐步填充 DP 表。 - **滑动窗口** 对于连续子数组相关的问,如“最小覆盖子串”、“无重复字符的最长子串”,滑动窗口是一种高效的解决方案。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值