自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 T5:运动鞋品牌识别学习记录

在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。如果设置为 False,则学习率将连续衰减。● min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。如果将设置初始学习率initial_learning_rate设置为0.1会较大,设置为0.001效果较佳,正如前面案例所示。● decay_rate(衰减率):学习率的衰减率。

2024-11-08 21:51:55 828

原创 T4:猴痘病识别学习记录

monitor=‘val_accuracy’:这指定了回调函数要监视的指标是验证集上的准确率(val_accuracy)。(三)训练模型时设置了50个迭代次数,而且使用了TensorFlow Keras库中的ModelCheckpoint回调函数来在训练深度学习模型时自动保存最优模型。save_best_only=True:这个参数设置为True意味着只有当监测到的指标改善了(即,val_accuracy提高了)时,才会保存当前的模型。1表示在训练过程中会打印出详细的信息,比如每次更新模型时的验证准确率。

2024-11-01 17:27:14 708

原创 T3:天气识别学习记录

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。● Image_batch是形状的张量(32,180,180,3)。(1)明确如何使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。(3)如何编写预测模块的代码?

2024-10-24 12:18:58 629

原创 T2:彩色图片分类学习记录

这些特征可能包括灰度边缘、灰度梯度等,虽然不如彩色特征丰富,但在某些情况下仍然足够用于分类任务。彩色图片输入层接收的是一个三维张量,包含红(R)、绿(G)、蓝(B)三个通道;每个通道的值介于0到255之间,代表不同颜色通道的亮度;这些特征可能包括颜色边缘、颜色区域等,有助于区分不同类别的物体。2、将卷积层的卷积核3x3(原来)设置为2x2,并且添加一个池化层3,2*2采样,测试集accuracy由0.7045999765396118提高到0.7200000286102295。T2:彩色图片分类学习记录。

2024-10-16 23:23:34 282

原创 T1:实现mnist手写数字识别学习记录

通过不断地调整网络中的参数(如权重和偏置),使得网络能够从数据中学习到合适的特征表示,并在输出层进行预测或决策。它是机器学习领域中的一个新的研究方向,旨在通过构建多层神经网络模型来模拟人脑神经元的工作方式,从而让计算机能够自主学习并提取数据中的高级特征。它通过卷积层和池化层提取图像中的特征,能够自动识别图像中的边缘、形状、纹理等高级特征。输入层————卷积层1————池化层1————卷积层2—————池化层2。————Flatten层————全连接层————输出层。● 全连接层:起到“特征提取器”的作用。

2024-10-04 17:22:18 813

原创 L6:支持向量机实战学习打卡

SVM在处理小样本数据、高维特征空间和非线性问题时表现出色,但对于大规模数据集和缺失数据的处理相对困难。同时,在模型的解释性方面也存在一定的挑战。1、学会调用scikit-learn库实现线性与非线性SVM。2、了解SVM的一些相关参数。第L6周:支持向量机实战。

2024-09-27 21:51:00 167

原创 L8:机器学习|随机森林学习记录

随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。对于回归问题,最终的回归结果是多个决策树的预测结果的平均值。随机森林通常通过观察每个特征在多个决策树中的分裂情况以及其对模型性能的影响来估计特征的重要性。异常值处理————描述性统计————构建随机森林模型进行预测————生成了模型的重要特征图。假设总共有M个特征,在每次分裂节点时,从这些特征中随机选择m个特征,其中m通常由用户指定。在每次决策树节点的分裂过程中,随机森林引入了特征的随机性。

2024-09-20 22:16:36 971

原创 L5:机器学习|决策树模型学习记录

##应用该模型,可以根据花萼长度、花萼宽度、花瓣长度 预测 花瓣宽度(回归树)###应用该模型,可以根据鸢尾花的四个特征去预测它的类别(分类树)***实例:通过鸢尾花数据,训练一个决策树模型。第L5周:机器学习|决策树模型学习记录。###将决策树模型用于分类或者回归。

2024-09-13 21:45:20 467

原创 第L4周:机器学习|K-邻近算法模型学习记录

基本思想:给定一个待分类样本,找出与其距离最近的k个训练样本(邻居),然后通过这k个邻居的类别来决定待分类样本的类别,即这K个样本的多数属于某个类,就把该输入样本分类到这个类中。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。4.计算预测值:在分类任务中,选择k个邻居中出现最多的类别作为结果。2.计算距离:对待预测样本和训练样本中的每一个样本计算距离。3.选择k个最近的邻居:从训练样本中选出与待预测样本距离最近的k个样本。● 3:人物类别(不喜欢的人、魅力一般的人、极具魅力的人)

2024-09-06 21:29:25 429

原创 第L3周:机器学习|逻辑回归 LogisticRegression学习记录

y_pred是一个numpy.ndarray类型的一维数组结构,y_test为Series类型的一维序列结构,用list()函数将它们都转换为列表,再将它们集成到一个DataFrame中。逻辑回归的核心思想是将输入特征通过一个线性函数映射到输出,然后使用逻辑函数(Sigmoid函数或Softmax函数)将线性函数的输出转换为概率,从而实现分类。在二分类问题中,逻辑回归的输出是一个0到1之间的概率值,表示某个样本属于某一类的概率。·假阳性 (FP): 实际为负类但预测为正类的样本数量(也称为 I 型错误)。

2024-08-30 15:32:31 807

原创 第L2周:机器学习|线性回归模型 LinearRegression 学习打卡

本周主要学习了线性回归(一元、多元)模型,并利用鸢尾花相关数据来进行一定的预测。第L2周:机器学习|线性回归模型 LinearRegression。*任务一:通过鸢尾花花瓣长度预测花瓣宽度。*任务二:选用其他三个变量来预测花瓣长度。第2步:训练多元线性回归模型。第4步:测试集预测结果可视化。第1步:划分训练集和测试集。第3步:在测试集上预测结果。第2步:简单线性回归模型。

2024-08-23 17:51:11 364 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除