个人工作汇报:作为项目的发起者,我一开始主要进行了前期工作的准备,并将负责代码的编写。我们将设计一个前后端不分离的项目。经过学习,我们决定前端用html+js,后端用flask。
浏览器请求 → Flask 路由 → 处理请求 → 渲染模板(HTML+Jinja2) → 返回给浏览器 → 浏览器执行JS
首先是项目结构。
your_project/
│
├── app/ # 主应用代码
│ ├── __init__.py # 初始化 Flask 应用
│ ├── routes/ # 路由接口文件
│ │ └── main.py # 推荐功能的接口逻辑
│ ├── model/ # 模型加载与推理逻辑
│ │ ├── xgb_model.py # XGBoost 模型封装
│ │ └── deepseek_model.py # DeepSeek NLP 封装
│ ├── templates/ # 前端 HTML 模板
│ │ └── index.html # 主界面页面
│ └── static/ # 静态资源(JS、CSS)
│ └── main.js # 与 HTML 页面交互的 JS
│
├── run.py # 启动应用
├── requirements.txt # 依赖列表(推荐用 pip freeze 生成)
└── README.md # 项目说明文档
其次是需求分析。
业务流程分析:
智能志愿辅助填报系统业务流程分析
1. 用户需求输入 考生首先输入基本信息,包括高考分数、选科组合(例如物理和化学)、目标地区(例如北京或上海)、感兴趣的专业(例如计算机或医学)等。考生还可以设置个人偏好,比如志愿填报策略(例如冲稳保比例)、优先考虑学校还是专业、是否愿意接受调剂等选项。
2. 数据查询与匹配 系统通过调用DeepSeek API,结合考生提供的信息,查询各大高校的历年录取数据、专业排名以及就业情况。同时,系统会对接教育考试院或权威数据平台,确保所有院校和专业信息都是最新且准确的。
3. 智能分析与推荐 基于考生的分数和偏好,系统会利用智能算法进行分析,生成个性化的志愿填报方案。方案通常包括冲刺院校(有一定风险但有机会)、稳妥院校(匹配度较高)和保底院校(确保录取)三个层次。系统还会提供详细的专业解读和院校分析,帮助考生更好地理解每个选项的优缺点。
4. 方案优化与调整 考生可以根据自己的需求手动调整志愿顺序,系统会实时更新并反馈调整后的录取概率变化。如果发现填报方案存在风险(例如志愿梯度不合理或热门专业竞争过于激烈),系统会及时给出提示,帮助考生优化选择。
5. 结果输出与存档 最终,系统会生成一份完整的志愿填报方案,考生可以将其导出保存或直接提交至志愿填报系统。整个过程旨在帮助考生做出更科学的决策。
功能需求分析
智能志愿辅助填报系统功能需求分析1. 用户管理功能- 考生注册登录功能- 个人信息管理功能(可填写和修改基本信息)- 志愿策略设置功能(冲稳保比例设置等)
2. 数据采集功能- 院校数据采集(全国主要院校近5年录取数据)- 专业数据采集(专业排名、就业前景等数据)- 政策数据采集(各省最新高考政策)
3. 智能推荐功能- 志愿方案自动生成功能- 录取概率预测功能- 专业匹配度分析功能
4. 方案优化功能- 志愿顺序调整功能- 风险提示功能(冲突检测、梯度不合理提示)- 模拟填报功能
5. 结果输出功能- 志愿表导出功能- 填报报告生成功能- 历史方案保存功能 倾向分析功能-从用户话语中分析出深造/就业/出国或者城市倾向的功能-根据倾向智能生成方案功能
7. 辅助工具功能- 院校专业查询功能- 分数线查询功能- 录取规则查询功能
8. 可视化功能- 录取概率可视化展示- 专业匹配度雷达图- 志愿梯度图标。